quox/lib/Quox/Syntax/Term/Base.idr

389 lines
11 KiB
Idris
Raw Normal View History

2022-04-23 18:21:30 -04:00
module Quox.Syntax.Term.Base
2023-06-05 10:40:55 -04:00
import public Quox.Thin
2022-04-23 18:21:30 -04:00
import public Quox.Syntax.Var
import public Quox.Syntax.Shift
import public Quox.Syntax.Subst
import public Quox.Syntax.Qty
import public Quox.Syntax.Dim
2023-04-15 09:13:01 -04:00
import public Quox.Syntax.Term.TyConKind
2022-04-23 18:21:30 -04:00
import public Quox.Name
2023-05-01 21:06:25 -04:00
import public Quox.Loc
import public Quox.Context
2022-04-23 18:21:30 -04:00
import Quox.Pretty
import public Data.DPair
import Data.List
import Data.Maybe
import Data.Nat
import public Data.So
import Data.String
import Derive.Prelude
2022-04-23 18:21:30 -04:00
%default total
%language ElabReflection
%hide TT.Name
2022-04-23 18:21:30 -04:00
public export
2023-04-15 09:13:01 -04:00
TermLike : Type
2023-04-01 13:16:43 -04:00
TermLike = Nat -> Nat -> Type
public export
2023-04-15 09:13:01 -04:00
TSubstLike : Type
2023-04-01 13:16:43 -04:00
TSubstLike = Nat -> Nat -> Nat -> Type
2023-03-05 10:48:29 -05:00
public export
2023-04-15 09:13:01 -04:00
Universe : Type
2023-03-05 10:48:29 -05:00
Universe = Nat
public export
2023-04-15 09:13:01 -04:00
TagVal : Type
TagVal = String
2023-04-15 09:13:01 -04:00
2023-06-05 10:40:55 -04:00
||| type-checkable terms, which consists of types and constructor forms.
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export
2023-06-05 10:40:55 -04:00
data Term : (d, n : Nat) -> Type
%name Term s, t, r
2023-06-05 10:40:55 -04:00
||| inferrable terms, which consists of elimination forms like application and
||| `case` (as well as other terms with an annotation)
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export
data Elim : (d, n : Nat) -> Type
%name Elim e, f
public export
2023-06-05 10:40:55 -04:00
ScopeTermN : Nat -> TermLike
ScopeTermN s d n = ScopedN s (\n => Term d n) n
2023-02-25 09:24:45 -05:00
2023-06-05 10:40:55 -04:00
public export
DScopeTermN : Nat -> TermLike
DScopeTermN s d n = ScopedN s (\d => Term d n) d
2023-02-25 09:24:45 -05:00
2023-06-05 10:40:55 -04:00
public export
ScopeTerm : TermLike
ScopeTerm = ScopeTermN 1
2023-06-05 10:40:55 -04:00
public export
DScopeTerm : TermLike
DScopeTerm = DScopeTermN 1
2023-05-01 21:06:25 -04:00
2023-06-05 10:40:55 -04:00
public export
TermT : TermLike
TermT = Thinned2 (\d, n => Term d n)
2023-05-01 21:06:25 -04:00
2023-06-05 10:40:55 -04:00
public export
ElimT : TermLike
ElimT = Thinned2 (\d, n => Elim d n)
2023-02-25 09:24:45 -05:00
2022-04-27 14:06:39 -04:00
2023-06-05 10:40:55 -04:00
public export
DimArg : TermLike
DimArg d n = Dim d
2023-01-20 20:34:28 -05:00
2023-02-25 09:24:45 -05:00
2023-06-05 10:40:55 -04:00
data Term where
||| type of types
TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0
2023-05-01 21:06:25 -04:00
2023-06-05 10:40:55 -04:00
||| function type
Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
||| function value
Lam : ScopeTerm d n -> Loc -> Term d n
2023-05-01 21:06:25 -04:00
2023-06-05 10:40:55 -04:00
||| pair type
Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
||| pair value
Pair : Subterms [Term, Term] d n -> Loc -> Term d n
||| enum type
Enum : List TagVal -> Loc -> Term 0 0
||| enum value
Tag : TagVal -> Loc -> Term 0 0
||| equality type
Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n
||| equality value
DLam : DScopeTerm d n -> Loc -> Term d n
||| natural numbers (temporary until 𝐖 gets added)
Nat : Loc -> Term 0 0
Zero : Loc -> Term 0 0
Succ : Term d n -> Loc -> Term 0 0
||| package a value with a quantity
||| e.g. a value of [ω. A], when unpacked, can be used ω times,
||| even if the box itself is linear
BOX : Qty -> Term d n -> Loc -> Term d n
Box : Term d n -> Loc -> Term d n
E : Elim d n -> Term d n
||| term closure/suspended substitution
CloT : WithSubst (Term d) (Elim d) n -> Term d n
||| dimension closure/suspended substitution
DCloT : WithSubst (\d => Term d n) Dim d -> Term d n
||| first argument `d` is dimension scope size, second `n` is term scope size
public export
data Elim where
||| free variable, possibly with a displacement (see @crude, or @mugen for a
||| more abstract and formalised take)
|||
||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂
F : Name -> Universe -> Loc -> Elim 0 0
||| bound variable
B : Loc -> Elim 0 1
||| term application
App : Subterms [Elim, Term] d n -> Loc -> Elim d n
||| pair match
||| - the subterms are, in order: [head, return type, body]
||| - the quantity is that of the head, and since pairs only have one
||| constructor, can be 0
CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n ->
Loc -> Elim d n
||| enum match
CaseEnum : Qty -> (arms : List TagVal) ->
Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n ->
Loc -> Elim d n
||| nat match
CaseNat : Qty -> Qty ->
Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n ->
Loc -> Elim d n
||| box match
CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n
||| dim application
DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n
||| type-annotated term
Ann : Subterms [Term, Term] d n -> Loc -> Elim d n
||| coerce a value along a type equality, or show its coherence
||| [@xtt; §2.1.1]
Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n ->
Loc -> Elim d n
||| "generalised composition" [@xtt; §2.1.2]
Comp : Subterms [Term, DimArg, DimArg, Term,
DimArg, DScopeTerm, DScopeTerm] d n ->
Loc -> Elim d n
||| match on types. needed for b.s. of coercions [@xtt; §2.2]
TypeCase : Subterms [Elim, Term, -- head, type
Term, -- ★
ScopeTermN 2, -- pi
ScopeTermN 2, -- sig
Term, -- enum
ScopeTermN 5, -- eq
Term, -- nat
ScopeTerm -- box
] d n -> Loc -> Elim d n
||| term closure/suspended substitution
CloE : WithSubst (Elim d) (Elim d) n -> Elim d n
||| dimension closure/suspended substitution
DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n
-- this kills the idris ☹
-- export %hint
-- EqTerm : Eq (Term d n)
-- export %hint
-- EqElim : Eq (Elim d n)
-- EqTerm = deriveEq
-- EqElim = deriveEq
-- mutual
-- export %hint
-- ShowTerm : Show (Term d n)
-- ShowTerm = assert_total {a = Show (Term d n)} deriveShow
-- export %hint
-- ShowElim : Show (Elim d n)
-- ShowElim = assert_total {a = Show (Elim d n)} deriveShow
-- ||| scope which ignores all its binders
-- public export %inline
-- SN : {s : Nat} -> f n -> Scoped s f n
-- SN = S (replicate s $ BN Unused noLoc) . N
-- ||| scope which uses its binders
-- public export %inline
-- SY : BContext s -> f (s + n) -> Scoped s f n
-- SY ns = S ns . Y
-- public export %inline
-- name : Scoped 1 f n -> BindName
-- name (S [< x] _) = x
-- public export %inline
-- (.name) : Scoped 1 f n -> BindName
-- s.name = name s
-- ||| more convenient Pi
-- public export %inline
-- PiY : (qty : Qty) -> (x : BindName) ->
-- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n
-- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
-- ||| more convenient Lam
-- public export %inline
-- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n
-- LamY {x, body, loc} = Lam {body = SY [< x] body, loc}
-- public export %inline
-- LamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- LamN {body, loc} = Lam {body = SN body, loc}
-- ||| non dependent function type
-- public export %inline
-- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n
-- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc}
-- ||| more convenient Sig
-- public export %inline
-- SigY : (x : BindName) -> (fst : Term d n) ->
-- (snd : Term d (S n)) -> (loc : Loc) -> Term d n
-- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc}
-- ||| non dependent pair type
-- public export %inline
-- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
-- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
-- ||| more convenient Eq
-- public export %inline
-- EqY : (i : BindName) -> (ty : Term (S d) n) ->
-- (l, r : Term d n) -> (loc : Loc) -> Term d n
-- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc}
-- ||| more convenient DLam
-- public export %inline
-- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n
-- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc}
-- public export %inline
-- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- DLamN {body, loc} = DLam {body = SN body, loc}
-- ||| non dependent equality type
-- public export %inline
-- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
-- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
2023-02-25 09:24:45 -05:00
2023-02-12 15:30:08 -05:00
2022-04-23 18:21:30 -04:00
||| same as `F` but as a term
public export %inline
2023-06-05 10:40:55 -04:00
FT : Name -> Universe -> Loc -> Term 0 0
2023-05-21 14:09:34 -04:00
FT x u loc = E $ F x u loc
2022-04-23 18:21:30 -04:00
||| abbreviation for a bound variable like `BV 4` instead of
||| `B (VS (VS (VS (VS VZ))))`
public export %inline
2023-06-05 10:40:55 -04:00
BV : (i : Fin n) -> (loc : Loc) -> ElimT d n
BV i loc = Th2 zero (one' i) $ B loc
2022-04-23 18:21:30 -04:00
||| same as `BV` but as a term
public export %inline
2023-06-05 10:40:55 -04:00
BVT : (i : Fin n) -> (loc : Loc) -> TermT d n
BVT i loc = Th2 zero (one' i) $ E $ B loc
2023-03-26 10:14:58 -04:00
2023-03-26 10:15:19 -04:00
public export
2023-06-05 10:40:55 -04:00
makeNat : Nat -> Loc -> Term 0 0
makeNat 0 loc = Zero loc
2023-05-01 21:06:25 -04:00
makeNat (S k) loc = Succ (makeNat k loc) loc
2023-03-26 10:15:19 -04:00
2023-05-01 21:06:25 -04:00
export
Located (Elim d n) where
2023-06-05 10:40:55 -04:00
(F _ _ loc).loc = loc
(B loc).loc = loc
(App _ loc).loc = loc
(CasePair _ _ loc).loc = loc
(CaseEnum _ _ _ loc).loc = loc
(CaseNat _ _ _ loc).loc = loc
(CaseBox _ _ loc).loc = loc
(DApp _ loc).loc = loc
(Ann _ loc).loc = loc
(Coe _ loc).loc = loc
(Comp _ loc).loc = loc
(TypeCase _ loc).loc = loc
(CloE (Sub e _)).loc = e.loc
(DCloE (Sub e _)).loc = e.loc
2023-05-01 21:06:25 -04:00
export
Located (Term d n) where
(TYPE _ loc).loc = loc
2023-06-05 10:40:55 -04:00
(Pi _ _ loc).loc = loc
2023-05-01 21:06:25 -04:00
(Lam _ loc).loc = loc
2023-06-05 10:40:55 -04:00
(Sig _ loc).loc = loc
(Pair _ loc).loc = loc
2023-05-01 21:06:25 -04:00
(Enum _ loc).loc = loc
(Tag _ loc).loc = loc
2023-06-05 10:40:55 -04:00
(Eq _ loc).loc = loc
2023-05-01 21:06:25 -04:00
(DLam _ loc).loc = loc
(Nat loc).loc = loc
(Zero loc).loc = loc
(Succ _ loc).loc = loc
(BOX _ _ loc).loc = loc
(Box _ loc).loc = loc
(E e).loc = e.loc
(CloT (Sub t _)).loc = t.loc
(DCloT (Sub t _)).loc = t.loc
export
Relocatable (Elim d n) where
2023-06-05 10:40:55 -04:00
setLoc loc (F x u _) = F x u loc
setLoc loc (B _) = B loc
setLoc loc (App ts _) = App ts loc
setLoc loc (CasePair qty ts _) = CasePair qty ts loc
setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc
setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc
setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc
setLoc loc (DApp ts _) = DApp ts loc
setLoc loc (Ann ts _) = Ann ts loc
setLoc loc (Coe ts _) = Coe ts loc
setLoc loc (Comp ts _) = Comp ts loc
setLoc loc (TypeCase ts _) = TypeCase ts loc
setLoc loc (CloE (Sub term subst)) = CloE $ Sub (setLoc loc term) subst
setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst
2023-05-01 21:06:25 -04:00
export
Relocatable (Term d n) where
2023-06-05 10:40:55 -04:00
setLoc loc (TYPE l _) = TYPE l loc
setLoc loc (Pi qty ts _) = Pi qty ts loc
setLoc loc (Lam body _) = Lam body loc
setLoc loc (Sig ts _) = Sig ts loc
setLoc loc (Pair ts _) = Pair ts loc
setLoc loc (Enum cases _) = Enum cases loc
setLoc loc (Tag tag _) = Tag tag loc
setLoc loc (Eq ts _) = Eq ts loc
setLoc loc (DLam body _) = DLam body loc
setLoc loc (Nat _) = Nat loc
setLoc loc (Zero _) = Zero loc
setLoc loc (Succ p _) = Succ p loc
setLoc loc (BOX qty ty _) = BOX qty ty loc
setLoc loc (Box val _) = Box val loc
setLoc loc (E e) = E $ setLoc loc e
setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst
2023-05-01 21:06:25 -04:00
setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst