more equality & tests

This commit is contained in:
rhiannon morris 2023-02-12 21:30:08 +01:00
parent 3b9da2a1e5
commit a6f43a772e
7 changed files with 361 additions and 207 deletions

View file

@ -120,11 +120,11 @@ NonRedexTerm q d n defs = Subset (Term q d n) (NotRedex defs)
parameters {0 isGlobal : _} (defs : Definitions' q isGlobal)
namespace Term
export %inline
export covering %inline
whnfD : Term q d n -> NonRedexTerm q d n defs
whnfD = whnf $ \x => lookupElim x defs
namespace Elim
export %inline
export covering %inline
whnfD : Elim q d n -> NonRedexElim q d n defs
whnfD = whnf $ \x => lookupElim x defs

View file

@ -55,36 +55,52 @@ isTyCon (E {}) = True
isTyCon (CloT {}) = False
isTyCon (DCloT {}) = False
private
isSubSing : Term {} -> Bool
isSubSing ty =
let Element ty _ = pushSubsts ty in
case ty of
TYPE _ => False
Pi {res, _} => isSubSing res.term
Lam {} => False
Sig {fst, snd, _} => isSubSing fst && isSubSing snd.term
Pair {} => False
Eq {} => True
DLam {} => False
E e => False
public export %inline
sameTyCon : (s, t : Term q d n) ->
(0 ts : So (isTyCon s)) => (0 tt : So (isTyCon t)) =>
Bool
sameTyCon (TYPE {}) (TYPE {}) = True
sameTyCon (TYPE {}) _ = False
sameTyCon (Pi {}) (Pi {}) = True
sameTyCon (Pi {}) _ = False
sameTyCon (Sig {}) (Sig {}) = True
sameTyCon (Sig {}) _ = False
sameTyCon (Eq {}) (Eq {}) = True
sameTyCon (Eq {}) _ = False
sameTyCon (E {}) (E {}) = True
sameTyCon (E {}) _ = False
parameters (defs : Definitions' q g)
private
isSubSing : Term q 0 n -> Bool
isSubSing ty =
let Element ty nc = whnfD defs ty in
case ty of
TYPE _ => False
Pi {res, _} => isSubSing res.term
Lam {} => False
Sig {fst, snd, _} => isSubSing fst && isSubSing snd.term
Pair {} => False
Eq {} => True
DLam {} => False
E (s :# _) => isSubSing s
E _ => False
parameters {auto _ : HasErr q m}
export %inline
ensure : (a -> Error q) -> (p : a -> Bool) -> (t : a) -> m (So (p t))
ensure e p t = case nchoose $ p t of
Left y => pure y
Right n => throwError $ e t
Left y => pure y
Right _ => throwError $ e t
export %inline
ensureType : (t : Term q d n) -> m (So (isTyCon t))
ensureType = ensure NotType isTyCon
ensureTyCon : HasErr q m => (t : Term q d n) -> m (So (isTyCon t))
ensureTyCon = ensure NotType isTyCon
parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
mutual
-- [todo] remove cumulativity & subtyping, it's too much of a pain
-- mugen might be good
namespace Term
export covering %inline
compare0 : TContext q 0 n -> (ty, s, t : Term q 0 n) -> m ()
@ -92,7 +108,7 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
let Element ty nty = whnfD defs ty
Element s ns = whnfD defs s
Element t nt = whnfD defs t
tty <- ensureType ty
tty <- ensureTyCon ty
compare0' ctx ty s t
private %inline
@ -107,9 +123,9 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
m ()
compare0' ctx (TYPE _) s t = compareType ctx s t
compare0' ctx ty@(Pi {arg, res, _}) s t = local {mode := Equal} $
compare0' ctx ty@(Pi {arg, res, _}) s t {n} = local {mode := Equal} $
let ctx' = ctx :< arg
eta : Elim q 0 ? -> ScopeTerm q 0 ? -> m ()
eta : Elim q 0 n -> ScopeTerm q 0 n -> m ()
eta e (TUsed b) = compare0 ctx' res.term (toLamBody e) b
eta e (TUnused _) = clashT ty s t
in
@ -117,7 +133,7 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
(Lam _ b1, Lam _ b2) => compare0 ctx' res.term b1.term b2.term
(E e, Lam _ b) => eta e b
(Lam _ b, E e) => eta e b
(E e, E f) => compare0 ctx e f
(E e, E f) => Elim.compare0 ctx e f
_ => throwError $ WrongType ty s t
compare0' ctx ty@(Sig {fst, snd, _}) s t = local {mode := Equal} $
@ -137,75 +153,72 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
-- e.g. an abstract value in an abstract type, bound variables, …
E e <- pure s | _ => throwError $ WrongType ty s t
E f <- pure t | _ => throwError $ WrongType ty s t
compare0 ctx e f
Elim.compare0 ctx e f
export covering
compareType : TContext q 0 n -> (s, t : Term q 0 n) -> m ()
compareType ctx s t = do
let Element s ns = whnfD defs s
Element t nt = whnfD defs t
sok <- ensureType s
tok <- ensureType t
ts <- ensureTyCon s
tt <- ensureTyCon t
st <- either pure (const $ clashT (TYPE UAny) s t) $
nchoose $ sameTyCon s t
compareType' ctx s t
private covering
compareType' : TContext q 0 n -> (s, t : Term q 0 n) ->
(0 ns : NotRedex defs s) => (0 ts : So (isTyCon s)) =>
(0 nt : NotRedex defs t) => (0 tt : So (isTyCon t)) =>
(0 st : So (sameTyCon s t)) =>
m ()
compareType' ctx s t = do
let err : m () = clashT (TYPE UAny) s t
case s of
TYPE k => do
TYPE l <- pure t | _ => err
expectModeU !mode k l
compareType' ctx (TYPE k) (TYPE l) =
expectModeU !mode k l
Pi {qty = sQty, arg = sArg, res = sRes, _} => do
Pi {qty = tQty, arg = tArg, res = tRes, _} <- pure t | _ => err
expectEqualQ sQty tQty
compareType ctx tArg sArg -- contra
-- [todo] is using sArg also ok for subtyping?
compareType (ctx :< sArg) sRes.term tRes.term
compareType' ctx (Pi {qty = sQty, arg = sArg, res = sRes, _})
(Pi {qty = tQty, arg = tArg, res = tRes, _}) = do
expectEqualQ sQty tQty
local {mode $= flip} $ compareType ctx sArg tArg -- contra
compareType (ctx :< sArg) sRes.term tRes.term
Sig {fst = sFst, snd = sSnd, _} => do
Sig {fst = tFst, snd = tSnd, _} <- pure t | _ => err
compareType ctx sFst tFst
compareType (ctx :< sFst) sSnd.term tSnd.term
compareType' ctx (Sig {fst = sFst, snd = sSnd, _})
(Sig {fst = tFst, snd = tSnd, _}) = do
compareType ctx sFst tFst
compareType (ctx :< sFst) sSnd.term tSnd.term
Eq {ty = sTy, l = sl, r = sr, _} => do
Eq {ty = tTy, l = tl, r = tr, _} <- pure t | _ => err
compareType ctx sTy.zero tTy.zero
compareType ctx sTy.one tTy.one
local {mode := Equal} $ do
compare0 ctx sTy.zero sl tl
compare0 ctx sTy.one sr tr
compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _})
(Eq {ty = tTy, l = tl, r = tr, _}) = do
compareType ctx sTy.zero tTy.zero
compareType ctx sTy.one tTy.one
local {mode := Equal} $ do
Term.compare0 ctx sTy.zero sl tl
Term.compare0 ctx sTy.one sr tr
E e => do
E f <- pure t | _ => err
-- no fanciness needed here cos anything other than a neutral
-- has been inlined by whnfD
compare0 ctx e f
compareType' ctx (E e) (E f) = do
-- no fanciness needed here cos anything other than a neutral
-- has been inlined by whnfD
Elim.compare0 ctx e f
||| assumes the elim is already typechecked! only does the work necessary
||| to calculate the overall type
private covering
computeElimType : TContext q 0 n -> (e : Elim q 0 n) ->
(0 ne : NotRedex defs e) =>
(0 ne : NotRedex defs e) ->
m (Term q 0 n)
computeElimType ctx (F x) = do
computeElimType ctx (F x) _ = do
defs <- lookupFree' defs x
pure $ defs.type.get
computeElimType ctx (B i) = do
computeElimType ctx (B i) _ = do
pure $ ctx !! i
computeElimType ctx (f :@ s) {ne} = do
(_, arg, res) <- computeElimType ctx f {ne = noOr1 ne} >>= expectPi defs
computeElimType ctx (f :@ s) ne = do
(_, arg, res) <- expectPi defs !(computeElimType ctx f (noOr1 ne))
pure $ sub1 res (s :# arg)
computeElimType ctx (CasePair {pair, ret, _}) = do
computeElimType ctx (CasePair {pair, ret, _}) _ = do
pure $ sub1 ret pair
computeElimType ctx (f :% p) {ne} = do
(ty, _, _) <- computeElimType ctx f {ne = noOr1 ne} >>= expectEq defs
computeElimType ctx (f :% p) ne = do
(ty, _, _) <- expectEq defs !(computeElimType ctx f (noOr1 ne))
pure $ dsub1 ty p
computeElimType ctx (_ :# ty) = do
computeElimType ctx (_ :# ty) _ = do
pure ty
private covering
@ -213,13 +226,12 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
(e : Elim q 0 n) -> DimConst -> (0 ne : NotRedex defs e) ->
m (Elim q 0 n)
replaceEnd ctx e p ne = do
(ty, l, r) <- computeElimType ctx e >>= expectEq defs
(ty, l, r) <- expectEq defs !(computeElimType ctx e ne)
pure $ ends l r p :# dsub1 ty (K p)
namespace Elim
-- [fixme] the following code ends up repeating a lot of work in the
-- computeElimType calls. the results should be shared better
export covering %inline
compare0 : TContext q 0 n -> (e, f : Elim q 0 n) -> m ()
compare0 ctx e f =
@ -227,48 +239,50 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
Element f nf = whnfD defs f
in
-- [fixme] there is a better way to do this "isSubSing" stuff for sure
unless (isSubSing !(computeElimType ctx e)) $ compare0' ctx e f
unless (isSubSing defs !(computeElimType ctx e ne)) $
compare0' ctx e f ne nf
private covering
compare0' : TContext q 0 n ->
(e, f : Elim q 0 n) ->
(0 ne : NotRedex defs e) => (0 nf : NotRedex defs f) =>
(0 ne : NotRedex defs e) -> (0 nf : NotRedex defs f) ->
m ()
-- replace applied equalities with the appropriate end first
-- e.g. e : Eq [i ⇒ A] s t ⊢ e 0 = s : A0/i
compare0' ctx (e :% K p) f {ne} =
-- e.g. e : Eq [i ⇒ A] s t ⊢ e 𝟎 = s : A𝟎/i
compare0' ctx (e :% K p) f ne nf =
compare0 ctx !(replaceEnd ctx e p $ noOr1 ne) f
compare0' ctx e (f :% K q) {nf} =
compare0' ctx e (f :% K q) ne nf =
compare0 ctx e !(replaceEnd ctx f q $ noOr1 nf)
compare0' _ e@(F x) f@(F y) = unless (x == y) $ clashE e f
compare0' _ e@(F _) f = clashE e f
compare0' _ e@(F x) f@(F y) _ _ = unless (x == y) $ clashE e f
compare0' _ e@(F _) f _ _ = clashE e f
compare0' ctx e@(B i) f@(B j) = unless (i == j) $ clashE e f
compare0' _ e@(B _) f = clashE e f
compare0' ctx e@(B i) f@(B j) _ _ = unless (i == j) $ clashE e f
compare0' _ e@(B _) f _ _ = clashE e f
compare0' ctx (e :@ s) (f :@ t) {ne} = local {mode := Equal} $ do
compare0 ctx e f
(_, arg, _) <- computeElimType ctx e {ne = noOr1 ne} >>= expectPi defs
compare0 ctx arg s t
compare0' _ e@(_ :@ _) f = clashE e f
compare0' ctx (CasePair epi e _ eret _ _ ebody)
(CasePair fpi f _ fret _ _ fbody) {ne} =
compare0' ctx (e :@ s) (f :@ t) ne nf =
local {mode := Equal} $ do
compare0 ctx e f
ety <- computeElimType ctx e {ne = noOr1 ne}
(_, arg, _) <- expectPi defs !(computeElimType ctx e (noOr1 ne))
Term.compare0 ctx arg s t
compare0' _ e@(_ :@ _) f _ _ = clashE e f
compare0' ctx (CasePair epi e _ eret _ _ ebody)
(CasePair fpi f _ fret _ _ fbody) ne nf =
local {mode := Equal} $ do
compare0 ctx e f
ety <- computeElimType ctx e (noOr1 ne)
compareType (ctx :< ety) eret.term fret.term
(fst, snd) <- expectSig defs ety
compare0 (ctx :< fst :< snd.term) (substCasePairRet ety eret)
Term.compare0 (ctx :< fst :< snd.term) (substCasePairRet ety eret)
ebody.term fbody.term
unless (epi == fpi) $ throwError $ ClashQ epi fpi
compare0' _ e@(CasePair {}) f = clashE e f
compare0' _ e@(CasePair {}) f _ _ = clashE e f
compare0' ctx (s :# a) (t :# b) = do
compareType ctx a b
compare0 ctx a s t
compare0' _ e@(_ :# _) f = clashE e f
compare0' ctx (s :# a) (t :# _) _ _ = Term.compare0 ctx a s t
compare0' ctx (s :# a) f _ _ = Term.compare0 ctx a s (E f)
compare0' ctx e (t :# b) _ _ = Term.compare0 ctx b (E e) t
compare0' _ e@(_ :# _) f _ _ = clashE e f
parameters {auto _ : (HasDefs' q _ m, HasErr q m, Eq q)}

View file

@ -90,7 +90,7 @@ mutual
||| `CasePair 𝜋 𝑒 𝑟 𝐴 𝑥 𝑦 𝑡` is
||| `𝐜𝐚𝐬𝐞 𝜋 · 𝑒 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟𝐴 𝐨𝐟 { (𝑥, 𝑦) ⇒ 𝑡 }`
CasePair : (qty : q) -> (pair : Elim q d n) ->
(r : Name) -> (ret : ScopeTerm q d n) ->
(r : Name) -> (ret : ScopeTerm q d n) ->
(x, y : Name) -> (body : ScopeTermN 2 q d n) ->
Elim q d n
@ -146,6 +146,11 @@ public export %inline
Eq0 : (ty, l, r : Term q d n) -> Term q d n
Eq0 {ty, l, r} = Eq {i = "_", ty = DUnused ty, l, r}
||| non dependent pair type
public export %inline
And : (fst, snd : Term q d n) -> Term q d n
And {fst, snd} = Sig {x = "_", fst, snd = TUnused snd}
||| same as `F` but as a term
public export %inline
FT : Name -> Term q d n

View file

@ -109,7 +109,7 @@ record InferResult q d n where
public export
data EqMode = Equal | Sub
data EqMode = Equal | Sub | Super
%runElab derive "EqMode" [Generic, Meta, Eq, Ord, DecEq, Show]
@ -138,8 +138,15 @@ HasErr q = MonadError (Error q)
export %inline
ucmp : EqMode -> Universe -> Universe -> Bool
ucmp Sub = (<=)
ucmp Equal = (==)
ucmp Sub = (<=)
ucmp Super = (>=)
export %inline
flip : EqMode -> EqMode
flip Equal = Equal
flip Sub = Super
flip Super = Sub
parameters {auto _ : HasErr q m}
@ -172,7 +179,7 @@ lookupFree' defs x =
Nothing => throwError $ NotInScope x
export
public export
substCasePairRet : Term q d n -> ScopeTerm q d n -> Term q d (2 + n)
substCasePairRet dty retty =
let arg = Pair (BVT 0) (BVT 1) :# (dty // fromNat 2) in

View file

@ -14,4 +14,4 @@ allTests = [
Typechecker.tests
]
main = TAP.main !getTestOpts allTests
main = TAP.main !getTestOpts ["all" :- allTests]

View file

@ -15,7 +15,9 @@ defGlobals = fromList
("a", mkAbstract Any $ FT "A"),
("a'", mkAbstract Any $ FT "A"),
("b", mkAbstract Any $ FT "B"),
("f", mkAbstract Any $ Arr One (FT "A") (FT "A"))]
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
("id", mkDef Any (Arr One (FT "A") (FT "A")) (["x"] :\\ BVT 0)),
("eq-ab", mkAbstract Zero $ Eq0 (TYPE 0) (FT "A") (FT "B"))]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three}
@ -45,15 +47,15 @@ parameters {default 0 d, n : Nat}
export
tests : Test
tests = "equality & subtyping" :- [
note #""s{t,…}" for term substs; "sp,…›" for dim substs"#,
note #""0=1𝒥" means that 𝒥 holds in an inconsistent dim context"#,
note #""s{}" for term substs; "s" for dim substs"#,
"universes" :- [
testEq "★₀ ★₀" $
testEq "★₀ = ★₀" $
equalT [<] (TYPE 1) (TYPE 0) (TYPE 0),
testNeq "★₀ ★₁" $
testNeq "★₀ ★₁" $
equalT [<] (TYPE 2) (TYPE 0) (TYPE 1),
testNeq "★₁ ★₀" $
testNeq "★₁ ★₀" $
equalT [<] (TYPE 2) (TYPE 1) (TYPE 0),
testEq "★₀ <: ★₀" $
subT [<] (TYPE 1) (TYPE 0) (TYPE 0),
@ -64,33 +66,15 @@ tests = "equality & subtyping" :- [
],
"pi" :- [
note #""AB" for (1·A) → B"#,
note #""AB" for (0·A) → B"#,
testEq "A ⊸ B ≡ A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm tm,
testNeq "A ⇾ B ≢ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm1 tm2,
testEq "0=1 ⊢ A ⇾ B ≢ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm1 tm2 {eqs = ZeroIsOne},
testEq "A ⊸ B <: A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
subT [<] (TYPE 0) tm tm,
testNeq "A ⇾ B ≮: A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
subT [<] (TYPE 0) tm1 tm2,
testEq "★₀ ⇾ ★₀ ≡ ★₀ ⇾ ★₀" $
note #""𝐴𝐵" for (1·𝐴)𝐵"#,
note #""𝐴𝐵" for (0·𝐴)𝐵"#,
testEq "★₀ ⇾ ★₀ = ★₀ ⇾ ★₀" $
let tm = Arr Zero (TYPE 0) (TYPE 0) in
equalT [<] (TYPE 1) tm tm,
testEq "★₀ ⇾ ★₀ <: ★₀ ⇾ ★₀" $
let tm = Arr Zero (TYPE 0) (TYPE 0) in
subT [<] (TYPE 1) tm tm,
testNeq "★₁ ⊸ ★₀ ★₀ ⇾ ★₀" $
testNeq "★₁ ⊸ ★₀ ≠ ★₀ ⇾ ★₀" $
let tm1 = Arr Zero (TYPE 1) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 0) in
equalT [<] (TYPE 2) tm1 tm2,
@ -98,10 +82,6 @@ tests = "equality & subtyping" :- [
let tm1 = Arr One (TYPE 1) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 0) in
subT [<] (TYPE 2) tm1 tm2,
testNeq "★₀ ⊸ ★₀ ≢ ★₀ ⇾ ★₁" $
let tm1 = Arr Zero (TYPE 0) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 1) in
equalT [<] (TYPE 2) tm1 tm2,
testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $
let tm1 = Arr One (TYPE 0) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 1) in
@ -109,11 +89,35 @@ tests = "equality & subtyping" :- [
testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $
let tm1 = Arr One (TYPE 0) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 1) in
subT [<] (TYPE 2) tm1 tm2
subT [<] (TYPE 2) tm1 tm2,
testEq "A ⊸ B = A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm tm,
testEq "A ⊸ B <: A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
subT [<] (TYPE 0) tm tm,
note "incompatible quantities",
testNeq "★₀ ⊸ ★₀ ≠ ★₀ ⇾ ★₁" $
let tm1 = Arr Zero (TYPE 0) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 1) in
equalT [<] (TYPE 2) tm1 tm2,
testNeq "A ⇾ B ≠ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm1 tm2,
testNeq "A ⇾ B ≮: A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
subT [<] (TYPE 0) tm1 tm2,
testEq "0=1 ⊢ A ⇾ B = A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT [<] (TYPE 0) tm1 tm2 {eqs = ZeroIsOne},
note "[todo] should π ≤ ρ ⊢ (ρ·A) → B <: (π·A) → B?"
],
"lambda" :- [
testEq "λ x ⇒ [x] ≡ λ x ⇒ [x]" $
testEq "λ x ⇒ [x] = λ x ⇒ [x]" $
equalT [<] (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["x"] :\\ BVT 0),
@ -121,7 +125,7 @@ tests = "equality & subtyping" :- [
subT [<] (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["x"] :\\ BVT 0),
testEq "λ x ⇒ [x] λ y ⇒ [y]" $
testEq "λ x ⇒ [x] = λ y ⇒ [y]" $
equalT [<] (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["y"] :\\ BVT 0),
@ -129,74 +133,124 @@ tests = "equality & subtyping" :- [
equalT [<] (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["y"] :\\ BVT 0),
testNeq "λ x y ⇒ [x] λ x y ⇒ [y]" $
testNeq "λ x y ⇒ [x] λ x y ⇒ [y]" $
equalT [<] (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
(["x", "y"] :\\ BVT 1)
(["x", "y"] :\\ BVT 0),
testEq "λ x ⇒ [a] λ x ⇒ [a] (TUsed vs TUnused)" $
testEq "λ x ⇒ [a] = λ x ⇒ [a] (TUsed vs TUnused)" $
equalT [<] (Arr Zero (FT "B") (FT "A"))
(Lam "x" $ TUsed $ FT "a")
(Lam "x" $ TUnused $ FT "a"),
testEq "λ x ⇒ [f [x]] [f] (η)" $
testEq "λ x ⇒ [f [x]] = [f] (η)" $
equalT [<] (Arr One (FT "A") (FT "A"))
(["x"] :\\ E (F "f" :@ BVT 0))
(FT "f")
],
"eq type" :- [
testEq "(★₀ = ★₀ : ★₁) ≡ (★₀ = ★₀ : ★₁)" $
testEq "(★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : ★₁)" $
let tm = Eq0 (TYPE 1) (TYPE 0) (TYPE 0) in
equalT [<] (TYPE 2) tm tm,
testEq "A ≔ ★₁ ⊢ (★₀ = ★₀ : ★₁) ≡ (★₀ = ★₀ : A)"
testEq "A ≔ ★₁ ⊢ (★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : A)"
{globals = fromList [("A", mkDef zero (TYPE 2) (TYPE 1))]} $
equalT [<] (TYPE 2)
(Eq0 (TYPE 1) (TYPE 0) (TYPE 0))
(Eq0 (FT "A") (TYPE 0) (TYPE 0))
],
"equalities" :-
"equalities and uip" :-
let refl : Term q d n -> Term q d n -> Elim q d n
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
in
[
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x)(x ≡ x : A)""#,
testEq "refl [A] a ≡ refl [A] a" $
note "binds before ∥ are globals, after it are BVs",
testEq "refl [A] a = refl [A] a" $
equalE [<] (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ⊢ p ≡ q (free)"
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ∥ ⊢ p = q (free)"
{globals =
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE [<] (F "p") (F "q"),
testEq "x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x ≡ y (bound)" $
testEq "∥ x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x = y (bound)" $
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
equalE [< ty, ty] (BV 0) (BV 1) {n = 2}
equalE [< ty, ty] (BV 0) (BV 1) {n = 2},
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
let ty : forall n. Term Three 0 n
:= E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
equalE [< ty, ty] (BV 0) (BV 1) {n = 2},
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
equalE [< FT "EE", FT "EE"] (BV 0) (BV 1) {n = 2},
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
equalE [< FT "EE", FT "E"] (BV 0) (BV 1) {n = 2},
testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
equalE [< FT "E", FT "E"] (BV 0) (BV 1) {n = 2},
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term Three 0 n
:= Sig "_" (FT "E") $ TUnused $ FT "E" in
equalE [< ty, ty] (BV 0) (BV 1) {n = 2},
testEq "E ≔ a ≡ a' : A, F ≔ E × E ∥ x : F, y : F ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef zero (TYPE 0) (FT "E" `And` FT "E"))]} $
equalE [< FT "W", FT "W"] (BV 0) (BV 1) {n = 2}
],
"term closure" :- [
note "𝑖, 𝑗 for bound variables pointing outside of the current expr",
testEq "[𝑖]{} ≡ [𝑖]" $
testEq "[#0]{} = [#0] : A" $
equalT [< FT "A"] (FT "A") {n = 1}
(CloT (BVT 0) id)
(BVT 0),
testEq "[𝑖]{a/𝑖} ≡ [a]" $
testEq "[#0]{a} = [a] : A" $
equalT [<] (FT "A")
(CloT (BVT 0) (F "a" ::: id))
(FT "a"),
testEq "[𝑖]{a/𝑖,b/𝑗} ≡ [a]" $
testEq "[#0]{a,b} = [a] : A" $
equalT [<] (FT "A")
(CloT (BVT 0) (F "a" ::: F "b" ::: id))
(FT "a"),
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUnused)" $
testEq "[#1]{a,b} = [b] : A" $
equalT [<] (FT "A")
(CloT (BVT 1) (F "a" ::: F "b" ::: id))
(FT "b"),
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (TUnused)" $
equalT [<] (Arr Zero (FT "B") (FT "A"))
(CloT (Lam "y" $ TUnused $ BVT 0) (F "a" ::: id))
(Lam "y" $ TUnused $ FT "a"),
testEq "(λy. [𝑖]){y/y, a/𝑖} ≡ λy. [a] (TUsed)" $
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (TUsed)" $
equalT [<] (Arr Zero (FT "B") (FT "A"))
(CloT (["y"] :\\ BVT 1) (F "a" ::: id))
(["y"] :\\ FT "a")
],
todo "term d-closure",
"term d-closure" :- [
testEq "★₀‹𝟎› = ★₀ : ★₁" $
equalT {d = 1} [<] (TYPE 1) (DCloT (TYPE 0) (K Zero ::: id)) (TYPE 0),
testEq "(λᴰ i ⇒ a)𝟎 = (λᴰ i ⇒ a) : (a ≡ a : A)" $
equalT {d = 1} [<]
(Eq0 (FT "A") (FT "a") (FT "a"))
(DCloT (["i"] :\\% FT "a") (K Zero ::: id))
(["i"] :\\% FT "a"),
note "it is hard to think of well-typed terms with big dctxs"
],
"free var" :-
let au_bu = fromList
@ -206,17 +260,19 @@ tests = "equality & subtyping" :- [
[("A", mkDef Any (TYPE (U 1)) (TYPE (U 0))),
("B", mkDef Any (TYPE (U 1)) (FT "A"))]
in [
testEq "A A" $
testEq "A = A" $
equalE [<] (F "A") (F "A"),
testNeq "A B" $
testNeq "A B" $
equalE [<] (F "A") (F "B"),
testEq "0=1 ⊢ A B" $
testEq "0=1 ⊢ A = B" $
equalE {eqs = ZeroIsOne} [<] (F "A") (F "B"),
testEq "A : ★₁ ≔ ★₀ ⊢ A (★₀ ∷ ★₁)" {globals = au_bu} $
testEq "A : ★₁ ≔ ★₀ ⊢ A = (★₀ ∷ ★₁)" {globals = au_bu} $
equalE [<] (F "A") (TYPE 0 :# TYPE 1),
testEq "A ≔ ★₀, B ≔ ★₀ ⊢ A ≡ B" {globals = au_bu} $
testEq "A : ★₁ ≔ ★₀ ⊢ [A] = ★₀" {globals = au_bu} $
equalT [<] (TYPE 1) (FT "A") (TYPE 0),
testEq "A ≔ ★₀, B ≔ ★₀ ⊢ A = B" {globals = au_bu} $
equalE [<] (F "A") (F "B"),
testEq "A ≔ ★₀, B ≔ A ⊢ A ≡ B" {globals = au_ba} $
testEq "A ≔ ★₀, B ≔ A ⊢ A = B" {globals = au_ba} $
equalE [<] (F "A") (F "B"),
testEq "A <: A" $
subE [<] (F "A") (F "A"),
@ -226,7 +282,8 @@ tests = "equality & subtyping" :- [
{globals = fromList [("A", mkDef Any (TYPE 3) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE [<] (F "A") (F "B"),
testEq "A : ★₁👈 ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
note "(A and B in different universes)",
testEq "A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE [<] (F "A") (F "B"),
@ -235,30 +292,33 @@ tests = "equality & subtyping" :- [
],
"bound var" :- [
note "𝑖, 𝑗 for distinct bound variables",
testEq "𝑖𝑖" $
testEq "#0 = #0" $
equalE [< TYPE 0] (BV 0) (BV 0) {n = 1},
testNeq "𝑖𝑗" $
testEq "#0 <: #0" $
subE [< TYPE 0] (BV 0) (BV 0) {n = 1},
testNeq "#0 ≠ #1" $
equalE [< TYPE 0, TYPE 0] (BV 0) (BV 1) {n = 2},
testEq "0=1 ⊢ 𝑖𝑗" $
testNeq "#0 ≮: #1" $
subE [< TYPE 0, TYPE 0] (BV 0) (BV 1) {n = 2},
testEq "0=1 ⊢ #0 = #1" $
equalE [< TYPE 0, TYPE 0] (BV 0) (BV 1)
{n = 2, eqs = ZeroIsOne}
],
"application" :- [
testEq "f [a] f [a]" $
testEq "f [a] = f [a]" $
equalE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "f [a] <: f [a]" $
subE [<] (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a ([a ∷ A] ∷ A) (β)" $
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a = ([a ∷ A] ∷ A) (β)" $
equalE [<]
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(E (FT "a" :# FT "A") :# FT "A"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a a (βυ)" $
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a = a (βυ)" $
equalE [<]
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a"),
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] = (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
let a = FT "A"; a2a = (Arr One a a) in
equalE [<]
(((["g"] :\\ E (BV 0 :@ FT "a")) :# Arr One a2a a) :@ FT "f")
@ -267,25 +327,68 @@ tests = "equality & subtyping" :- [
subE [<]
(((["x"] :\\ BVT 0) :# (Arr One (FT "A") (FT "A"))) :@ FT "a")
(F "a"),
testEq "id : A ⊸ A ≔ λ x ⇒ [x] ⊢ id [a] ≡ a"
{globals = defGlobals `mergeLeft` fromList
[("id", mkDef Any (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0))]} $
equalE [<] (F "id" :@ FT "a") (F "a")
note "id : A ⊸ A ≔ λ x ⇒ [x]",
testEq "id [a] = a" $ equalE [<] (F "id" :@ FT "a") (F "a"),
testEq "id [a] <: a" $ subE [<] (F "id" :@ FT "a") (F "a")
],
todo "dim application",
todo "annotation",
"annotation" :- [
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = [f] ∷ A ⊸ A" $
equalE [<]
((["x"] :\\ E (F "f" :@ BVT 0)) :# Arr One (FT "A") (FT "A"))
(FT "f" :# Arr One (FT "A") (FT "A")),
testEq "[f] ∷ A ⊸ A = f" $
equalE [<] (FT "f" :# Arr One (FT "A") (FT "A")) (F "f"),
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = f" $
equalE [<]
((["x"] :\\ E (F "f" :@ BVT 0)) :# Arr One (FT "A") (FT "A"))
(F "f")
],
todo "elim closure",
"elim closure" :- [
testEq "#0{a} = a" $
equalE [<] (CloE (BV 0) (F "a" ::: id)) (F "a"),
testEq "#1{a} = #0" $
equalE [< FT "A"] (CloE (BV 1) (F "a" ::: id)) (BV 0) {n = 1}
],
todo "elim d-closure",
"elim d-closure" :- [
note "0·eq-ab : (A ≡ B : ★₀)",
testEq "(eq-ab #0)𝟎 = eq-ab 𝟎" $
equalE {d = 1} [<]
(DCloE (F "eq-ab" :% BV 0) (K Zero ::: id))
(F "eq-ab" :% K Zero),
testEq "(eq-ab #0)𝟎 = A" $
equalE {d = 1} [<] (DCloE (F "eq-ab" :% BV 0) (K Zero ::: id)) (F "A"),
testEq "(eq-ab #0)𝟏 = B" $
equalE {d = 1} [<] (DCloE (F "eq-ab" :% BV 0) (K One ::: id)) (F "B"),
testNeq "(eq-ab #0)𝟏 ≠ A" $
equalE {d = 1} [<] (DCloE (F "eq-ab" :% BV 0) (K One ::: id)) (F "A"),
testEq "(eq-ab #0)#0,𝟎 = (eq-ab #0)" $
equalE {d = 2} [<]
(DCloE (F "eq-ab" :% BV 0) (BV 0 ::: K Zero ::: id))
(F "eq-ab" :% BV 0),
testNeq "(eq-ab #0)𝟎 ≠ (eq-ab 𝟎)" $
equalE {d = 2} [<]
(DCloE (F "eq-ab" :% BV 0) (BV 0 ::: K Zero ::: id))
(F "eq-ab" :% K Zero),
testEq "#0𝟎 = #0 # term and dim vars distinct" $
equalE {d = 1, n = 1} [< FT "A"] (DCloE (BV 0) (K Zero ::: id)) (BV 0),
testEq "a𝟎 = a" $
equalE {d = 1} [<] (DCloE (F "a") (K Zero ::: id)) (F "a"),
testEq "(f [a])𝟎 = f𝟎 [a]𝟎" $
let th = (K Zero ::: id) in
equalE {d = 1} [<]
(DCloE (F "f" :@ FT "a") th)
(DCloE (F "f") th :@ DCloT (FT "a") th)
],
"clashes" :- [
testNeq "★₀ ≢ ★₀ ⇾ ★₀" $
testNeq "★₀ ★₀ ⇾ ★₀" $
equalT [<] (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
testEq "0=1 ⊢ ★₀ ≡ ★₀ ⇾ ★₀" $
testEq "0=1 ⊢ ★₀ = ★₀ ⇾ ★₀" $
equalT [<] (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0))
{eqs = ZeroIsOne},
todo "others"

View file

@ -15,7 +15,7 @@ M = ReaderT (Definitions Three) $ Either (Error Three)
reflTy : IsQty q => Term q d n
reflTy =
Pi zero "A" (TYPE 0) $ TUsed $
Pi zero "x" (BVT 0) $ TUsed $
Pi one "x" (BVT 0) $ TUsed $
Eq0 (BVT 1) (BVT 0) (BVT 0)
reflDef : IsQty q => Term q d n
@ -27,9 +27,13 @@ defGlobals = fromList
("B", mkAbstract Zero $ TYPE 0),
("C", mkAbstract Zero $ TYPE 1),
("D", mkAbstract Zero $ TYPE 1),
("P", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)),
("a", mkAbstract Any $ FT "A"),
("b", mkAbstract Any $ FT "B"),
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
("g", mkAbstract Any $ Arr One (FT "A") (FT "B")),
("p", mkAbstract Any $ Pi One "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0),
("q", mkAbstract Any $ Pi One "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0),
("refl", mkDef Any reflTy reflDef)]
parameters (label : String) (act : Lazy (M ()))
@ -79,60 +83,81 @@ tests = "typechecker" :- [
"function types" :- [
note "A, B : ★₀; C, D : ★₁",
testTC "0 · (1·A) → B ⇐ ★₀" $
testTC "0 · A ⊸ B ⇐ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0),
testTC "0 · (1·A) → B ⇐ ★₁👈" $
note "subtyping",
testTC "0 · A ⊸ B ⇐ ★₁" $
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1),
testTC "0 · (1·C) → D ⇐ ★₁" $
testTC "0 · C ⊸ D ⇐ ★₁" $
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1),
testTCFail "0 · (1·C) → D ⇍ ★₀" $
testTCFail "0 · C ⊸ D ⇍ ★₀" $
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0)
],
"free vars" :- [
note "A : ★₀",
testTC "0 · A ⇒ ★₀" $
inferAs (ctx [<]) szero (F "A") (TYPE 0),
testTC "0 · A ⇐👈 ★₀" $
note "check",
testTC "0 · A ⇐ ★₀" $
check_ (ctx [<]) szero (FT "A") (TYPE 0),
testTC "0 · A ⇐ ★₁👈" $
note "subtyping",
testTC "0 · A ⇐ ★₁" $
check_ (ctx [<]) szero (FT "A") (TYPE 1),
testTCFail "1👈 · A ⇏ ★₀" $
note "(fail) runtime-relevant type",
testTCFail "1 · A ⇏ ★₀" $
infer_ (ctx [<]) sone (F "A"),
note "refl : (0·A : ★₀) → (0·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)",
testTC "1 · refl ⇒ {type of refl}" $
inferAs (ctx [<]) sone (F "refl") reflTy,
testTC "1 · refl ⇐ {type of refl}" $
check_ (ctx [<]) sone (FT "refl") reflTy
note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)",
testTC "1 · refl ⇒ ⋯" $ inferAs (ctx [<]) sone (F "refl") reflTy,
testTC "1 · refl ⇐ ⋯" $ check_ (ctx [<]) sone (FT "refl") reflTy
],
"lambda" :- [
testTC #"1 · (λ A x ⇒ refl A x) ⇐ {type of refl, see "free vars"}"# $
note "linear & unrestricted identity",
testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
testTC "1 · (λ x ⇒ x) ⇐ A → A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
note "(fail) zero binding used relevantly",
testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
note "(but ok in overall erased context)",
testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $
check_ (ctx [<]) szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $
check_ (ctx [<]) sone
(["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
reflTy
reflTy,
testTC "1 · (λ A x ⇒ λᴰ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $
check_ (ctx [<]) sone reflDef reflTy
],
"misc" :- [
testTC "funext"
{globals = fromList
[("A", mkAbstract Zero $ TYPE 0),
("B", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)),
("f", mkAbstract Any $
Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0),
("g", mkAbstract Any $
Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)]} $
-- 0·A : Type, 0·B : ω·A → Type,
-- ω·f, g : (ω·x : A) → B x
-- ⊢
-- 0·funext : (ω·eq : (0·x : A) → f x ≡ g x) → f ≡ g
-- = λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i
check_ (ctx [<]) szero
note "0·A : Type, 0·P : A → Type, ω·p : (1·x : A) → P x",
note "",
note "1 · λ x y xy ⇒ λᴰ i ⇒ p (xy i)",
note " ⇐ (0·x, y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)",
testTC "cong" $
check_ (ctx [<]) sone
(["x", "y", "xy"] :\\ ["i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
(Pi Zero "x" (FT "A") $ TUsed $
Pi Zero "y" (FT "A") $ TUsed $
Pi One "xy" (Eq0 (FT "A") (BVT 1) (BVT 0)) $ TUsed $
Eq "i" (DUsed $ E $ F "P" :@ E (BV 0 :% BV 0))
(E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)),
note "0·A : Type, 0·P : ω·A → Type,",
note "ω·p, q : (1·x : A) → P x",
note "",
note "1 · λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i",
note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q",
testTC "funext" $
check_ (ctx [<]) sone
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
(Pi Any "eq"
(Pi Zero "x" (FT "A") $ TUsed $
Eq0 (E $ F "B" :@ BVT 0)
(E $ F "f" :@ BVT 0) (E $ F "g" :@ BVT 0)) $ TUsed $
Eq0 (Pi Any "x" (FT "A") $ TUsed $ E $ F "B" :@ BVT 0)
(FT "f") (FT "g"))
(Pi One "eq"
(Pi One "x" (FT "A") $ TUsed $
Eq0 (E $ F "P" :@ BVT 0)
(E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)) $ TUsed $
Eq0 (Pi Any "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0)
(FT "p") (FT "q"))
]
]