quox/lib/Quox/Typechecker.idr

433 lines
15 KiB
Idris
Raw Normal View History

2022-04-23 18:21:30 -04:00
module Quox.Typechecker
import public Quox.Typing
import public Quox.Equal
2022-04-23 18:21:30 -04:00
import Data.List
2023-03-26 10:09:47 -04:00
import Data.SnocVect
import Data.List1
2023-03-31 13:23:30 -04:00
import Quox.EffExtra
2022-04-23 18:21:30 -04:00
%default total
2023-01-20 20:34:28 -05:00
public export
2023-03-31 13:23:30 -04:00
0 TCEff : (q : Type) -> IsQty q => List (Type -> Type)
TCEff q = [ErrorEff q, DefsReader q]
2023-01-20 20:34:28 -05:00
public export
2023-03-31 13:23:30 -04:00
0 TC : (q : Type) -> IsQty q => Type -> Type
TC q = Eff $ TCEff q
export
runTC : (0 _ : IsQty q) => Definitions q -> TC q a -> Either (Error q) a
runTC defs = extract . runExcept . runReader defs
2023-01-20 20:34:28 -05:00
export
2023-03-31 13:23:30 -04:00
popQs : IsQty q => Has (ErrorEff q) fs =>
QOutput q s -> QOutput q (s + n) -> Eff fs (QOutput q n)
2023-02-14 15:14:47 -05:00
popQs [<] qout = pure qout
popQs (pis :< pi) (qout :< rh) = do expectCompatQ rh pi; popQs pis qout
2022-04-23 18:21:30 -04:00
export %inline
2023-03-31 13:23:30 -04:00
popQ : IsQty q => Has (ErrorEff q) fs =>
q -> QOutput q (S n) -> Eff fs (QOutput q n)
2023-01-26 13:54:46 -05:00
popQ pi = popQs [< pi]
export
lubs1 : IsQty q => List1 (QOutput q n) -> Maybe (QOutput q n)
lubs1 ([<] ::: _) = Just [<]
lubs1 ((qs :< p) ::: pqs) =
let (qss, ps) = unzip $ map unsnoc pqs in
[|lubs1 (qs ::: qss) :< foldlM lub p ps|]
export
lubs : IsQty q => TyContext q d n -> List (QOutput q n) -> Maybe (QOutput q n)
lubs ctx [] = Just $ zeroFor ctx
lubs ctx (x :: xs) = lubs1 $ x ::: xs
2022-04-23 18:21:30 -04:00
2023-03-31 13:23:30 -04:00
parameters {auto _ : IsQty q}
mutual
2023-02-19 11:04:57 -05:00
||| "Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ"
|||
2023-01-20 20:34:28 -05:00
||| `check ctx sg subj ty` checks that in the context `ctx`, the term
||| `subj` has the type `ty`, with quantity `sg`. if so, returns the
||| quantities of all bound variables that it used.
2023-02-19 11:51:44 -05:00
|||
||| if the dimension context is inconsistent, then return `Nothing`, without
||| doing any further work.
2022-04-23 18:21:30 -04:00
export covering %inline
2023-02-19 11:51:44 -05:00
check : (ctx : TyContext q d n) -> SQty q -> Term q d n -> Term q d n ->
2023-03-31 13:23:30 -04:00
TC q (CheckResult ctx.dctx q n)
2023-02-20 15:38:47 -05:00
check ctx sg subj ty = ifConsistent ctx.dctx $ checkC ctx sg subj ty
2022-04-23 18:21:30 -04:00
2023-02-19 11:04:57 -05:00
||| "Ψ | Γ ⊢₀ s ⇐ A"
|||
||| `check0 ctx subj ty` checks a term (as `check`) in a zero context.
2023-01-26 13:54:46 -05:00
export covering %inline
2023-03-31 13:23:30 -04:00
check0 : TyContext q d n -> Term q d n -> Term q d n -> TC q ()
2023-02-14 15:14:47 -05:00
check0 ctx tm ty = ignore $ check ctx szero tm ty
-- the output will always be 𝟎 because the subject quantity is 0
2023-01-26 13:54:46 -05:00
2023-02-19 11:51:44 -05:00
||| `check`, assuming the dimension context is consistent
export covering %inline
checkC : (ctx : TyContext q d n) -> SQty q -> Term q d n -> Term q d n ->
2023-03-31 13:23:30 -04:00
TC q (CheckResult' q n)
2023-02-19 11:51:44 -05:00
checkC ctx sg subj ty =
2023-02-19 11:54:39 -05:00
wrapErr (WhileChecking ctx sg.fst subj ty) $
let Element subj nc = pushSubsts subj in
2023-02-20 15:42:21 -05:00
check' ctx sg subj ty
2023-02-19 11:51:44 -05:00
||| "Ψ | Γ ⊢₀ s ⇐ ★ᵢ"
|||
||| `checkType ctx subj ty` checks a type (in a zero context). sometimes the
||| universe doesn't matter, only that a term is _a_ type, so it is optional.
export covering %inline
2023-03-31 13:23:30 -04:00
checkType : TyContext q d n -> Term q d n -> Maybe Universe -> TC q ()
checkType ctx subj l = ignore $ ifConsistent ctx.dctx $ checkTypeC ctx subj l
export covering %inline
2023-03-31 13:23:30 -04:00
checkTypeC : TyContext q d n -> Term q d n -> Maybe Universe -> TC q ()
checkTypeC ctx subj l =
wrapErr (WhileCheckingTy ctx subj l) $ checkTypeNoWrap ctx subj l
export covering %inline
2023-03-31 13:23:30 -04:00
checkTypeNoWrap : TyContext q d n -> Term q d n -> Maybe Universe -> TC q ()
checkTypeNoWrap ctx subj l =
let Element subj nc = pushSubsts subj in
checkType' ctx subj l
2023-02-19 11:51:44 -05:00
2023-02-19 11:04:57 -05:00
||| "Ψ | Γ ⊢ σ · e ⇒ A ⊳ Σ"
|||
2023-01-20 20:34:28 -05:00
||| `infer ctx sg subj` infers the type of `subj` in the context `ctx`,
||| and returns its type and the bound variables it used.
2023-02-19 11:51:44 -05:00
|||
||| if the dimension context is inconsistent, then return `Nothing`, without
||| doing any further work.
export covering %inline
infer : (ctx : TyContext q d n) -> SQty q -> Elim q d n ->
2023-03-31 13:23:30 -04:00
TC q (InferResult ctx.dctx q d n)
2023-02-20 15:38:47 -05:00
infer ctx sg subj = ifConsistent ctx.dctx $ inferC ctx sg subj
2023-02-19 11:51:44 -05:00
||| `infer`, assuming the dimension context is consistent
2022-04-23 18:21:30 -04:00
export covering %inline
2023-02-19 11:51:44 -05:00
inferC : (ctx : TyContext q d n) -> SQty q -> Elim q d n ->
2023-03-31 13:23:30 -04:00
TC q (InferResult' q d n)
2023-02-19 11:51:44 -05:00
inferC ctx sg subj =
2023-02-19 11:54:39 -05:00
wrapErr (WhileInferring ctx sg.fst subj) $
let Element subj nc = pushSubsts subj in
2023-02-20 15:42:21 -05:00
infer' ctx sg subj
2022-04-23 18:21:30 -04:00
private covering
toCheckType : TyContext q d n -> SQty q ->
(subj : Term q d n) -> (0 nc : NotClo subj) => Term q d n ->
2023-03-31 13:23:30 -04:00
TC q (CheckResult' q n)
toCheckType ctx sg t ty = do
u <- expectTYPE !ask ctx ty
expectEqualQ zero sg.fst
checkTypeNoWrap ctx t (Just u)
pure $ zeroFor ctx
2023-02-19 11:51:44 -05:00
private covering
2023-01-20 20:34:28 -05:00
check' : TyContext q d n -> SQty q ->
2023-02-20 15:42:21 -05:00
(subj : Term q d n) -> (0 nc : NotClo subj) => Term q d n ->
2023-03-31 13:23:30 -04:00
TC q (CheckResult' q n)
2022-04-23 18:21:30 -04:00
check' ctx sg t@(TYPE _) ty = toCheckType ctx sg t ty
2022-04-23 18:21:30 -04:00
check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty
2022-04-27 15:58:09 -04:00
2023-02-22 01:40:19 -05:00
check' ctx sg (Lam body) ty = do
(qty, arg, res) <- expectPi !ask ctx ty
2023-02-14 15:14:47 -05:00
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
-- with ρ ≤ σπ
let qty' = sg.fst * qty
2023-03-15 10:54:51 -04:00
qout <- checkC (extendTy qty' body.name arg ctx) sg body.term res.term
-- then Ψ | Γ ⊢ σ · (λx ⇒ t) ⇐ (π·x : A) → B ⊳ Σ
popQ qty' qout
2023-01-26 13:54:46 -05:00
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
2023-01-26 13:54:46 -05:00
2023-02-20 15:42:21 -05:00
check' ctx sg (Pair fst snd) ty = do
(tfst, tsnd) <- expectSig !ask ctx ty
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
2023-02-19 11:51:44 -05:00
qfst <- checkC ctx sg fst tfst
2023-01-26 13:54:46 -05:00
let tsnd = sub1 tsnd (fst :# tfst)
-- if Ψ | Γ ⊢ σ · t ⇐ B[s] ⊳ Σ₂
2023-02-19 11:51:44 -05:00
qsnd <- checkC ctx sg snd tsnd
-- then Ψ | Γ ⊢ σ · (s, t) ⇐ (x : A) × B ⊳ Σ₁ + Σ₂
2023-01-26 13:54:46 -05:00
pure $ qfst + qsnd
2022-04-27 15:58:09 -04:00
check' ctx sg t@(Enum _) ty = toCheckType ctx sg t ty
check' ctx sg (Tag t) ty = do
tags <- expectEnum !ask ctx ty
-- if t ∈ ts
2023-03-31 13:23:30 -04:00
unless (t `elem` tags) $ throw $ TagNotIn t tags
-- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎
pure $ zeroFor ctx
check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty
2023-01-20 20:34:28 -05:00
2023-02-22 01:40:19 -05:00
check' ctx sg (DLam body) ty = do
(ty, l, r) <- expectEq !ask ctx ty
-- if Ψ, i | Γ ⊢ σ · t ⇐ A ⊳ Σ
qout <- checkC (extendDim body.name ctx) sg body.term ty.term
-- if Ψ | Γ ⊢ t0 = l : A0
equal ctx ty.zero body.zero l
-- if Ψ | Γ ⊢ t1 = r : A1
equal ctx ty.one body.one r
2023-02-25 13:14:11 -05:00
-- then Ψ | Γ ⊢ σ · (δ i ⇒ t) ⇐ Eq [i ⇒ A] l r ⊳ Σ
2023-01-20 20:34:28 -05:00
pure qout
2023-03-26 08:40:54 -04:00
check' ctx sg Nat ty = toCheckType ctx sg Nat ty
check' ctx sg Zero ty = do
expectNat !ask ctx ty
pure $ zeroFor ctx
check' ctx sg (Succ n) ty = do
expectNat !ask ctx ty
checkC ctx sg n Nat
2023-03-31 13:11:35 -04:00
check' ctx sg t@(BOX {}) ty = toCheckType ctx sg t ty
check' ctx sg (Box val) ty = do
(q, ty) <- expectBOX !ask ctx ty
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
valout <- checkC ctx sg val ty
-- then Ψ | Γ ⊢ σ · [s] ⇐ [π.A] ⊳ πΣ
pure $ q * valout
2023-02-20 15:42:21 -05:00
check' ctx sg (E e) ty = do
-- if Ψ | Γ ⊢ σ · e ⇒ A' ⊳ Σ
2023-02-19 11:51:44 -05:00
infres <- inferC ctx sg e
-- if Ψ | Γ ⊢ A' <: A
subtype ctx infres.type ty
-- then Ψ | Γ ⊢ σ · e ⇐ A ⊳ Σ
2022-04-27 15:58:09 -04:00
pure infres.qout
2022-04-23 18:21:30 -04:00
private covering
checkType' : TyContext q d n ->
(subj : Term q d n) -> (0 nc : NotClo subj) =>
2023-03-31 13:23:30 -04:00
Maybe Universe -> TC q ()
checkType' ctx (TYPE k) u = do
-- if 𝓀 < then Ψ | Γ ⊢₀ Type 𝓀 ⇐ Type
case u of
2023-03-31 13:23:30 -04:00
Just l => unless (k < l) $ throw $ BadUniverse k l
Nothing => pure ()
checkType' ctx (Pi qty arg res) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx arg u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
case res.body of
2023-03-15 10:54:51 -04:00
Y res' => checkTypeC (extendTy zero res.name arg ctx) res' u
N res' => checkTypeC ctx res' u
-- then Ψ | Γ ⊢₀ (π·x : A) → B ⇐ Type
checkType' ctx t@(Lam {}) u =
2023-03-31 13:23:30 -04:00
throw $ NotType ctx t
checkType' ctx (Sig fst snd) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx fst u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
case snd.body of
2023-03-15 10:54:51 -04:00
Y snd' => checkTypeC (extendTy zero snd.name fst ctx) snd' u
N snd' => checkTypeC ctx snd' u
-- then Ψ | Γ ⊢₀ (x : A) × B ⇐ Type
checkType' ctx t@(Pair {}) u =
2023-03-31 13:23:30 -04:00
throw $ NotType ctx t
checkType' ctx (Enum _) u = pure ()
-- Ψ | Γ ⊢₀ {ts} ⇐ Type
checkType' ctx t@(Tag {}) u =
2023-03-31 13:23:30 -04:00
throw $ NotType ctx t
checkType' ctx (Eq t l r) u = do
-- if Ψ, i | Γ ⊢₀ A ⇐ Type
case t.body of
Y t' => checkTypeC (extendDim t.name ctx) t' u
N t' => checkTypeC ctx t' u
-- if Ψ | Γ ⊢₀ l ⇐ A0
check0 ctx t.zero l
-- if Ψ | Γ ⊢₀ r ⇐ A1
check0 ctx t.one r
-- then Ψ | Γ ⊢₀ Eq [i ⇒ A] l r ⇐ Type
checkType' ctx t@(DLam {}) u =
2023-03-31 13:23:30 -04:00
throw $ NotType ctx t
2023-03-26 08:40:54 -04:00
checkType' ctx Nat u = pure ()
2023-03-31 13:23:30 -04:00
checkType' ctx Zero u = throw $ NotType ctx Zero
checkType' ctx t@(Succ _) u = throw $ NotType ctx t
2023-03-26 08:40:54 -04:00
2023-03-31 13:11:35 -04:00
checkType' ctx (BOX q ty) u = checkType ctx ty u
2023-03-31 13:23:30 -04:00
checkType' ctx t@(Box _) u = throw $ NotType ctx t
2023-03-31 13:11:35 -04:00
checkType' ctx (E e) u = do
2023-03-31 13:11:35 -04:00
-- if Ψ | Γ ⊢₀ E ⇒ Type
infres <- inferC ctx szero e
2023-03-31 13:11:35 -04:00
-- if Ψ | Γ ⊢ Type <: Type 𝓀
case u of
Just u => subtype ctx infres.type (TYPE u)
Nothing => ignore $ expectTYPE !ask ctx infres.type
2023-03-31 13:11:35 -04:00
-- then Ψ | Γ ⊢₀ E ⇐ Type 𝓀
2023-02-19 11:51:44 -05:00
private covering
2023-01-20 20:34:28 -05:00
infer' : TyContext q d n -> SQty q ->
2023-02-20 15:42:21 -05:00
(subj : Elim q d n) -> (0 nc : NotClo subj) =>
2023-03-31 13:23:30 -04:00
TC q (InferResult' q d n)
2022-04-23 18:21:30 -04:00
2023-02-20 15:42:21 -05:00
infer' ctx sg (F x) = do
2023-02-14 15:14:47 -05:00
-- if π·x : A {≔ s} in global context
2023-01-20 20:34:28 -05:00
g <- lookupFree x
2023-01-26 13:54:46 -05:00
-- if σ ≤ π
expectCompatQ sg.fst g.qty
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
pure $ InfRes {type = injectT ctx g.type, qout = zeroFor ctx}
2023-02-22 01:40:19 -05:00
where
2023-03-31 13:23:30 -04:00
lookupFree : Name -> TC q (Definition q)
2023-02-22 01:40:19 -05:00
lookupFree x = lookupFree' !ask x
2022-04-23 18:21:30 -04:00
2023-02-20 15:42:21 -05:00
infer' ctx sg (B i) =
2023-01-26 13:54:46 -05:00
-- if x : A ∈ Γ
2023-02-14 15:14:47 -05:00
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ (𝟎, σ·x, 𝟎)
2023-02-19 11:51:44 -05:00
pure $ lookupBound sg.fst i ctx.tctx
2023-02-22 01:40:19 -05:00
where
lookupBound : q -> Var n -> TContext q d n -> InferResult' q d n
lookupBound pi VZ (ctx :< ty) =
InfRes {type = weakT ty, qout = zeroFor ctx :< pi}
lookupBound pi (VS i) (ctx :< _) =
let InfRes {type, qout} = lookupBound pi i ctx in
InfRes {type = weakT type, qout = qout :< zero}
2022-04-27 15:58:09 -04:00
2023-02-20 15:42:21 -05:00
infer' ctx sg (fun :@ arg) = do
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
2023-02-19 11:51:44 -05:00
funres <- inferC ctx sg fun
(qty, argty, res) <- expectPi !ask ctx funres.type
2023-02-14 15:14:47 -05:00
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂
2023-02-19 11:51:44 -05:00
argout <- checkC ctx (subjMult sg qty) arg argty
-- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + Σ₂
2023-01-20 20:34:28 -05:00
pure $ InfRes {
type = sub1 res $ arg :# argty,
qout = funres.qout + argout
}
2023-02-22 01:40:19 -05:00
infer' ctx sg (CasePair pi pair ret body) = do
-- no check for 1 ≤ π, since pairs have a single constructor.
-- e.g. at 0 the components are also 0 in the body
--
-- if Ψ | Γ ⊢ σ · pair ⇒ (x : A) × B ⊳ Σ₁
pairres <- inferC ctx sg pair
-- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type
2023-03-15 10:54:51 -04:00
checkTypeC (extendTy zero ret.name pairres.type ctx) ret.term Nothing
(tfst, tsnd) <- expectSig !ask ctx pairres.type
-- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐
-- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y
2023-02-23 04:04:00 -05:00
-- with ρ₁, ρ₂ ≤ πσ
let [< x, y] = body.names
2023-02-23 04:04:00 -05:00
pisg = pi * sg.fst
2023-03-15 10:54:51 -04:00
bodyctx = extendTyN [< (pisg, x, tfst), (pisg, y, tsnd.term)] ctx
bodyty = substCasePairRet pairres.type ret
2023-03-31 13:11:35 -04:00
bodyout <- checkC bodyctx sg body.term bodyty >>= popQs [< pisg, pisg]
-- then Ψ | Γ ⊢ σ · case ⋯ ⇒ ret[pair/p] ⊳ πΣ₁ + Σ₂
2023-01-26 13:54:46 -05:00
pure $ InfRes {
type = sub1 ret pair,
2023-03-31 13:11:35 -04:00
qout = pi * pairres.qout + bodyout
2023-01-26 13:54:46 -05:00
}
infer' ctx sg (CaseEnum pi t ret arms) {d, n} = do
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
tres <- inferC ctx sg t
ttags <- expectEnum !ask ctx tres.type
-- if 1 ≤ π, OR there is only zero or one option
unless (length (SortedSet.toList ttags) <= 1) $ expectCompatQ one pi
-- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type
2023-03-15 10:54:51 -04:00
checkTypeC (extendTy zero ret.name tres.type ctx) ret.term Nothing
-- if for each "a ⇒ s" in arms,
2023-03-31 13:11:35 -04:00
-- Ψ | Γ ⊢ σ · s ⇐ A[a ∷ {ts}/x] ⊳ Σᵢ
-- with Σ₂ = lubs Σᵢ
let arms = SortedMap.toList arms
let armTags = SortedSet.fromList $ map fst arms
2023-03-31 13:23:30 -04:00
unless (ttags == armTags) $ throw $ BadCaseEnum ttags armTags
armres <- for arms $ \(a, s) =>
checkC ctx sg s (sub1 ret (Tag a :# tres.type))
let Just armout = lubs ctx armres
2023-03-31 13:23:30 -04:00
| _ => throw $ BadCaseQtys ctx $
zipWith (\qs, (t, rhs) => (qs, Tag t)) armres arms
pure $ InfRes {
type = sub1 ret t,
qout = pi * tres.qout + armout
}
2023-03-26 08:40:54 -04:00
infer' ctx sg (CaseNat pi pi' n ret zer suc) = do
-- if 1 ≤ π
expectCompatQ one pi
-- if Ψ | Γ ⊢ σ · n ⇒ ⊳ Σn
nres <- inferC ctx sg n
expectNat !ask ctx nres.type
-- if Ψ | Γ, n : ⊢₀ A ⇐ Type
checkTypeC (extendTy zero ret.name Nat ctx) ret.term Nothing
-- if Ψ | Γ ⊢ σ · zer ⇐ A[0 ∷ /n] ⊳ Σz
zerout <- checkC ctx sg zer (sub1 ret (Zero :# Nat))
-- if Ψ | Γ, n : , ih : A ⊢ σ · suc ⇐ A[succ p ∷ /n] ⊳ Σs, ρ₁.p, ρ₂.ih
-- with ρ₂ ≤ π'σ, (ρ₁ + ρ₂) ≤ πσ
2023-03-26 08:40:54 -04:00
let [< p, ih] = suc.names
pisg = pi * sg.fst
sucCtx = extendTyN [< (pisg, p, Nat), (pi', ih, ret.term)] ctx
sucType = substCaseNatRet ret
sucout :< qp :< qih <- checkC sucCtx sg suc.term sucType
let Just armout = lubs ctx [zerout, sucout]
2023-03-31 13:23:30 -04:00
| _ => throw $ BadCaseQtys ctx $
[(zerout, Zero), (sucout, Succ $ FT $ unq p)]
expectCompatQ qih (pi' * sg.fst)
2023-03-26 08:40:54 -04:00
-- [fixme] better error here
expectCompatQ (qp + qih) pisg
-- then Ψ | Γ ⊢ case ⋯ ⇒ A[n] ⊳ πΣn + (Σz ∧ Σs)
2023-03-26 08:40:54 -04:00
pure $ InfRes {
type = sub1 ret n,
qout = pi * nres.qout + armout
2023-03-26 08:40:54 -04:00
}
2023-03-31 13:11:35 -04:00
infer' ctx sg (CaseBox pi box ret body) = do
-- if Ψ | Γ ⊢ σ · b ⇒ [ρ.A] ⊳ Σ₁
boxres <- inferC ctx sg box
(q, ty) <- expectBOX !ask ctx boxres.type
-- if Ψ | Γ, x : [ρ.A] ⊢₀ R ⇐ Type
checkTypeC (extendTy zero ret.name boxres.type ctx) ret.term Nothing
-- if Ψ | Γ, x : A ⊢ t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x
-- with ς ≤ ρπσ
let qpisg = q * pi * sg.fst
bodyCtx = extendTy qpisg body.name boxres.type ctx
bodyType = substCaseBoxRet ty ret
bodyout <- checkC bodyCtx sg body.term bodyType >>= popQ qpisg
-- then Ψ | Γ ⊢ case ⋯ ⇒ R[b/x] ⊳ Σ₁ + Σ₂
pure $ InfRes {
type = sub1 ret box,
qout = boxres.qout + bodyout
}
2023-02-20 15:42:21 -05:00
infer' ctx sg (fun :% dim) = do
-- if Ψ | Γ ⊢ σ · f ⇒ Eq [𝑖 ⇒ A] l r ⊳ Σ
2023-02-19 11:51:44 -05:00
InfRes {type, qout} <- inferC ctx sg fun
ty <- fst <$> expectEq !ask ctx type
-- then Ψ | Γ ⊢ σ · f p ⇒ Ap/𝑖 ⊳ Σ
2023-01-20 20:34:28 -05:00
pure $ InfRes {type = dsub1 ty dim, qout}
2023-02-20 15:42:21 -05:00
infer' ctx sg (term :# type) = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx type Nothing
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
2023-02-19 11:51:44 -05:00
qout <- checkC ctx sg term type
-- then Ψ | Γ ⊢ σ · (s ∷ A) ⇒ A ⊳ Σ
2023-01-20 20:34:28 -05:00
pure $ InfRes {type, qout}