new representation for scopes
This commit is contained in:
parent
c75f1514ba
commit
0e481a8098
14 changed files with 376 additions and 364 deletions
|
@ -83,15 +83,15 @@ parameters (defs : Definitions' q g)
|
|||
isSubSing ty =
|
||||
let Element ty nc = whnf defs ty in
|
||||
case ty of
|
||||
TYPE _ => False
|
||||
Pi {res, _} => isSubSing res.term
|
||||
Lam {} => False
|
||||
Sig {fst, snd, _} => isSubSing fst && isSubSing snd.term
|
||||
Pair {} => False
|
||||
Eq {} => True
|
||||
DLam {} => False
|
||||
E (s :# _) => isSubSing s
|
||||
E _ => False
|
||||
TYPE _ => False
|
||||
Pi {res, _} => isSubSing res.term
|
||||
Lam {} => False
|
||||
Sig {fst, snd} => isSubSing fst && isSubSing snd.term
|
||||
Pair {} => False
|
||||
Eq {} => True
|
||||
DLam {} => False
|
||||
E (s :# _) => isSubSing s
|
||||
E _ => False
|
||||
|
||||
|
||||
parameters {auto _ : HasErr q m}
|
||||
|
@ -141,13 +141,13 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
|||
-- Γ, x : A ⊢ s = t : B
|
||||
-- -----------------------------------------
|
||||
-- Γ ⊢ (λx ⇒ s) = (λx ⇒ t) : (π·x : A) → B
|
||||
(Lam _ b1, Lam _ b2) => compare0 ctx' res.term b1.term b2.term
|
||||
(Lam b1, Lam b2) => compare0 ctx' res.term b1.term b2.term
|
||||
|
||||
-- Γ, x : A ⊢ s = e x : B
|
||||
-- ----------------------------------
|
||||
-- Γ ⊢ (λx ⇒ s) = e : (π·x : A) → B
|
||||
(E e, Lam _ b) => eta e b
|
||||
(Lam _ b, E e) => eta e b
|
||||
(E e, Lam b) => eta e b
|
||||
(Lam b, E e) => eta e b
|
||||
|
||||
(E e, E f) => Elim.compare0 ctx e f
|
||||
_ => throwError $ WrongType ty s t
|
||||
|
@ -156,8 +156,8 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
|||
ctx' = ctx :< arg
|
||||
|
||||
eta : Elim q 0 n -> ScopeTerm q 0 n -> m ()
|
||||
eta e (TUsed b) = compare0 ctx' res.term (toLamBody e) b
|
||||
eta e (TUnused _) = clashT ty s t
|
||||
eta e (S _ (Y b)) = compare0 ctx' res.term (toLamBody e) b
|
||||
eta e (S _ (N _)) = clashT ty s t
|
||||
|
||||
compare0' ctx ty@(Sig {fst, snd, _}) s t = local {mode := Equal} $
|
||||
case (s, t) of
|
||||
|
@ -322,8 +322,8 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
|||
Term.compare0 ctx arg s t
|
||||
compare0' _ e@(_ :@ _) f _ _ = clashE e f
|
||||
|
||||
compare0' ctx (CasePair epi e _ eret _ _ ebody)
|
||||
(CasePair fpi f _ fret _ _ fbody) ne nf =
|
||||
compare0' ctx (CasePair epi e eret ebody)
|
||||
(CasePair fpi f fret fbody) ne nf =
|
||||
local {mode := Equal} $ do
|
||||
compare0 ctx e f
|
||||
ety <- computeElimType ctx e (noOr1 ne)
|
||||
|
@ -334,7 +334,12 @@ parameters (defs : Definitions' q _) {auto _ : (CanEqual q m, Eq q)}
|
|||
unless (epi == fpi) $ throwError $ ClashQ epi fpi
|
||||
compare0' _ e@(CasePair {}) f _ _ = clashE e f
|
||||
|
||||
compare0' ctx (s :# a) (t :# _) _ _ = Term.compare0 ctx a s t
|
||||
compare0' ctx (s :# a) (t :# b) _ _ =
|
||||
Term.compare0 ctx !(bigger a b) s t
|
||||
where
|
||||
bigger : forall a. a -> a -> m a
|
||||
bigger l r = asks mode <&> \case Super => l; _ => r
|
||||
|
||||
compare0' ctx (s :# a) f _ _ = Term.compare0 ctx a s (E f)
|
||||
compare0' ctx e (t :# b) _ _ = Term.compare0 ctx b (E e) t
|
||||
compare0' _ e@(_ :# _) f _ _ = clashE e f
|
||||
|
|
|
@ -45,6 +45,10 @@ export
|
|||
FromString Name where
|
||||
fromString x = MakeName [<] (fromString x)
|
||||
|
||||
public export %inline
|
||||
unq : BaseName -> Name
|
||||
unq = MakeName [<]
|
||||
|
||||
|
||||
export
|
||||
toDots : Name -> String
|
||||
|
|
|
@ -40,8 +40,8 @@ data HL
|
|||
public export
|
||||
data PPrec
|
||||
= Outer
|
||||
| Ann -- right of "::"
|
||||
| AnnL -- left of "::"
|
||||
| Ann -- right of "∷"
|
||||
| AnnL -- left of "∷"
|
||||
| Eq -- "_ ≡ _ : _"
|
||||
| InEq -- arguments of ≡
|
||||
-- ...
|
||||
|
@ -153,12 +153,12 @@ withPrec d = local {prec := d}
|
|||
public export data BinderSort = T | D
|
||||
|
||||
export %inline
|
||||
unders : HasEnv m => BinderSort -> List Name -> m a -> m a
|
||||
unders T xs = local {prec := Outer, tnames $= (xs ++)}
|
||||
unders D xs = local {prec := Outer, dnames $= (xs ++)}
|
||||
unders : HasEnv m => BinderSort -> List BaseName -> m a -> m a
|
||||
unders T xs = local {prec := Outer, tnames $= (map unq xs ++)}
|
||||
unders D xs = local {prec := Outer, dnames $= (map unq xs ++)}
|
||||
|
||||
export %inline
|
||||
under : HasEnv m => BinderSort -> Name -> m a -> m a
|
||||
under : HasEnv m => BinderSort -> BaseName -> m a -> m a
|
||||
under t x = unders t [x]
|
||||
|
||||
|
||||
|
@ -237,9 +237,9 @@ a </> b = cat [a, b]
|
|||
|
||||
|
||||
||| wrapper for names that pretty-prints highlighted as a `TVar`.
|
||||
public export data TVarName = TV Name
|
||||
public export data TVarName = TV BaseName
|
||||
export %inline PrettyHL TVarName where prettyM (TV x) = hlF TVar $ prettyM x
|
||||
|
||||
||| wrapper for names that pretty-prints highlighted as a `DVar`.
|
||||
public export data DVarName = DV Name
|
||||
public export data DVarName = DV BaseName
|
||||
export %inline PrettyHL DVarName where prettyM (DV x) = hlF DVar $ prettyM x
|
||||
|
|
|
@ -63,18 +63,18 @@ mutual
|
|||
PushSubsts Term Reduce.isCloT where
|
||||
pushSubstsWith th ph (TYPE l) =
|
||||
nclo $ TYPE l
|
||||
pushSubstsWith th ph (Pi qty x a body) =
|
||||
nclo $ Pi qty x (a // th // ph) (body // th // ph)
|
||||
pushSubstsWith th ph (Lam x body) =
|
||||
nclo $ Lam x $ body // th // ph
|
||||
pushSubstsWith th ph (Sig x a b) =
|
||||
nclo $ Sig x (a // th // ph) (b // th // ph)
|
||||
pushSubstsWith th ph (Pi qty a body) =
|
||||
nclo $ Pi qty (a // th // ph) (body // th // ph)
|
||||
pushSubstsWith th ph (Lam body) =
|
||||
nclo $ Lam (body // th // ph)
|
||||
pushSubstsWith th ph (Sig a b) =
|
||||
nclo $ Sig (a // th // ph) (b // th // ph)
|
||||
pushSubstsWith th ph (Pair s t) =
|
||||
nclo $ Pair (s // th // ph) (t // th // ph)
|
||||
pushSubstsWith th ph (Eq i ty l r) =
|
||||
nclo $ Eq i (ty // th // ph) (l // th // ph) (r // th // ph)
|
||||
pushSubstsWith th ph (DLam i body) =
|
||||
nclo $ DLam i $ body // th // ph
|
||||
pushSubstsWith th ph (Eq ty l r) =
|
||||
nclo $ Eq (ty // th // ph) (l // th // ph) (r // th // ph)
|
||||
pushSubstsWith th ph (DLam body) =
|
||||
nclo $ DLam (body // th // ph)
|
||||
pushSubstsWith th ph (E e) =
|
||||
let Element e nc = pushSubstsWith th ph e in nclo $ E e
|
||||
pushSubstsWith th ph (CloT s ps) =
|
||||
|
@ -93,8 +93,8 @@ mutual
|
|||
Right no => Element res no
|
||||
pushSubstsWith th ph (f :@ s) =
|
||||
nclo $ (f // th // ph) :@ (s // th // ph)
|
||||
pushSubstsWith th ph (CasePair pi p x r y z b) =
|
||||
nclo $ CasePair pi (p // th // ph) x (r // th // ph) y z (b // th // ph)
|
||||
pushSubstsWith th ph (CasePair pi p r b) =
|
||||
nclo $ CasePair pi (p // th // ph) (r // th // ph) (b // th // ph)
|
||||
pushSubstsWith th ph (f :% d) =
|
||||
nclo $ (f // th // ph) :% (d // th)
|
||||
pushSubstsWith th ph (s :# a) =
|
||||
|
@ -197,13 +197,13 @@ mutual
|
|||
let Element f fnf = whnf defs f in
|
||||
case nchoose $ isLamHead f of
|
||||
Left _ =>
|
||||
let Lam {body, _} :# Pi {arg, res, _} = f
|
||||
let Lam body :# Pi {arg, res, _} = f
|
||||
s = s :# arg
|
||||
in
|
||||
whnf defs $ sub1 body s :# sub1 res s
|
||||
Right nlh => Element (f :@ s) $ fnf `orNo` nlh
|
||||
|
||||
whnf defs (CasePair pi pair r ret x y body) =
|
||||
whnf defs (CasePair pi pair ret body) =
|
||||
let Element pair pairnf = whnf defs pair in
|
||||
case nchoose $ isPairHead pair of
|
||||
Left _ =>
|
||||
|
@ -219,7 +219,7 @@ mutual
|
|||
let Element f fnf = whnf defs f in
|
||||
case nchoose $ isDLamHead f of
|
||||
Left _ =>
|
||||
let DLam {body, _} :# Eq {ty, l, r, _} = f
|
||||
let DLam body :# Eq {ty = ty, l, r, _} = f
|
||||
body = endsOr l r (dsub1 body p) p
|
||||
in
|
||||
whnf defs $ body :# dsub1 ty p
|
||||
|
|
|
@ -47,22 +47,20 @@ mutual
|
|||
TYPE : (l : Universe) -> Term q d n
|
||||
|
||||
||| function type
|
||||
Pi : (qty : q) -> (x : Name) ->
|
||||
(arg : Term q d n) -> (res : ScopeTerm q d n) -> Term q d n
|
||||
Pi : (qty : q) -> (arg : Term q d n) ->
|
||||
(res : ScopeTerm q d n) -> Term q d n
|
||||
||| function term
|
||||
Lam : (x : Name) -> (body : ScopeTerm q d n) -> Term q d n
|
||||
Lam : (body : ScopeTerm q d n) -> Term q d n
|
||||
|
||||
||| pair type
|
||||
Sig : (x : Name) -> (fst : Term q d n) -> (snd : ScopeTerm q d n) ->
|
||||
Term q d n
|
||||
Sig : (fst : Term q d n) -> (snd : ScopeTerm q d n) -> Term q d n
|
||||
||| pair value
|
||||
Pair : (fst, snd : Term q d n) -> Term q d n
|
||||
|
||||
||| equality type
|
||||
Eq : (i : Name) -> (ty : DScopeTerm q d n) -> (l, r : Term q d n) ->
|
||||
Term q d n
|
||||
Eq : (ty : DScopeTerm q d n) -> (l, r : Term q d n) -> Term q d n
|
||||
||| equality term
|
||||
DLam : (i : Name) -> (body : DScopeTerm q d n) -> Term q d n
|
||||
DLam : (body : DScopeTerm q d n) -> Term q d n
|
||||
|
||||
||| elimination
|
||||
E : (e : Elim q d n) -> Term q d n
|
||||
|
@ -87,11 +85,11 @@ mutual
|
|||
|
||||
||| pair destruction
|
||||
|||
|
||||
||| `CasePair 𝜋 𝑒 𝑟 𝐴 𝑥 𝑦 𝑡` is
|
||||
||| `CasePair 𝜋 𝑒 ([𝑟], 𝐴) ([𝑥, 𝑦], 𝑡)` is
|
||||
||| `𝐜𝐚𝐬𝐞 𝜋 · 𝑒 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟 ⇒ 𝐴 𝐨𝐟 { (𝑥, 𝑦) ⇒ 𝑡 }`
|
||||
CasePair : (qty : q) -> (pair : Elim q d n) ->
|
||||
(r : Name) -> (ret : ScopeTerm q d n) ->
|
||||
(x, y : Name) -> (body : ScopeTermN 2 q d n) ->
|
||||
(ret : ScopeTerm q d n) ->
|
||||
(body : ScopeTermN 2 q d n) ->
|
||||
Elim q d n
|
||||
|
||||
||| dim application
|
||||
|
@ -107,49 +105,51 @@ mutual
|
|||
DCloE : (el : Elim q dfrom n) -> (th : Lazy (DSubst dfrom dto)) ->
|
||||
Elim q dto n
|
||||
|
||||
||| a scope with some more bound term variables
|
||||
public export
|
||||
data ScopeTermN : Nat -> TermLike where
|
||||
||| at least some variables are used
|
||||
TUsed : (body : Term q d (s + n)) -> ScopeTermN s q d n
|
||||
||| all variables are unused
|
||||
TUnused : (body : Term q d n) -> ScopeTermN s q d n
|
||||
0 CaseEnumArms : TermLike
|
||||
CaseEnumArms q d n = SortedMap TagVal (Term q d n)
|
||||
|
||||
||| a scoped term with names
|
||||
public export
|
||||
record Scoped (s : Nat) (f : Nat -> Type) (n : Nat) where
|
||||
constructor S
|
||||
names : Vect s BaseName
|
||||
body : ScopedBody s f n
|
||||
|
||||
public export
|
||||
0 ScopeTerm : TermLike
|
||||
ScopeTerm = ScopeTermN 1
|
||||
|
||||
||| a scope with some more bound dimension variable
|
||||
public export
|
||||
data DScopeTermN : Nat -> TermLike where
|
||||
||| at least some variables are used
|
||||
DUsed : (body : Term q (s + d) n) -> DScopeTermN s q d n
|
||||
||| all variables are unused
|
||||
DUnused : (body : Term q d n) -> DScopeTermN s q d n
|
||||
data ScopedBody : Nat -> (Nat -> Type) -> Nat -> Type where
|
||||
Y : (body : f (s + n)) -> ScopedBody s f n
|
||||
N : (body : f n) -> ScopedBody s f n
|
||||
|
||||
public export
|
||||
0 DScopeTerm : TermLike
|
||||
0 ScopeTermN, DScopeTermN : Nat -> TermLike
|
||||
ScopeTermN s q d n = Scoped s (Term q d) n
|
||||
DScopeTermN s q d n = Scoped s (\d => Term q d n) d
|
||||
|
||||
public export
|
||||
0 ScopeTerm, DScopeTerm : TermLike
|
||||
ScopeTerm = ScopeTermN 1
|
||||
DScopeTerm = DScopeTermN 1
|
||||
|
||||
%name Term s, t, r
|
||||
%name Elim e, f
|
||||
%name ScopeTermN body
|
||||
%name DScopeTermN body
|
||||
%name Scoped body
|
||||
%name ScopedBody body
|
||||
|
||||
||| non dependent function type
|
||||
public export %inline
|
||||
Arr : (qty : q) -> (arg, res : Term q d n) -> Term q d n
|
||||
Arr {qty, arg, res} = Pi {qty, x = "_", arg, res = TUnused res}
|
||||
Arr {qty, arg, res} = Pi {qty, arg, res = S ["_"] $ N res}
|
||||
|
||||
||| non dependent equality type
|
||||
public export %inline
|
||||
Eq0 : (ty, l, r : Term q d n) -> Term q d n
|
||||
Eq0 {ty, l, r} = Eq {i = "_", ty = DUnused ty, l, r}
|
||||
Eq0 {ty, l, r} = Eq {ty = S ["_"] $ N ty, l, r}
|
||||
|
||||
||| non dependent pair type
|
||||
public export %inline
|
||||
And : (fst, snd : Term q d n) -> Term q d n
|
||||
And {fst, snd} = Sig {x = "_", fst, snd = TUnused snd}
|
||||
And {fst, snd} = Sig {fst, snd = S ["_"] $ N snd}
|
||||
|
||||
||| same as `F` but as a term
|
||||
public export %inline
|
||||
|
|
|
@ -32,25 +32,80 @@ ofD = hl Syntax "of"
|
|||
returnD = hl Syntax "return"
|
||||
|
||||
|
||||
export covering
|
||||
prettyBindType : Pretty.HasEnv m =>
|
||||
PrettyHL q => PrettyHL a => PrettyHL b =>
|
||||
List q -> BaseName -> a -> Doc HL -> b -> m (Doc HL)
|
||||
prettyBindType qtys x s arr t =
|
||||
parensIfM Outer $ hang 2 $
|
||||
parens !(prettyQtyBinds qtys $ TV x) <++> arr
|
||||
<//> !(under T x $ prettyM t)
|
||||
|
||||
export covering
|
||||
prettyLams : Pretty.HasEnv m => PrettyHL a =>
|
||||
BinderSort -> List BaseName -> a -> m (Doc HL)
|
||||
prettyLams sort names body = do
|
||||
lam <- case sort of T => lamD; D => dlamD
|
||||
header <- sequence $ [hl TVar <$> prettyM x | x <- names] ++ [darrowD]
|
||||
body <- unders sort names $ prettyM body
|
||||
parensIfM Outer $ sep (lam :: header) <//> body
|
||||
|
||||
export covering
|
||||
prettyApps : Pretty.HasEnv m => PrettyHL f => PrettyHL a =>
|
||||
f -> List a -> m (Doc HL)
|
||||
prettyApps fun args =
|
||||
parensIfM App =<< withPrec Arg
|
||||
[|prettyM fun <//> (align . sep <$> traverse prettyM args)|]
|
||||
|
||||
export covering
|
||||
prettyTuple : Pretty.HasEnv m => PrettyHL a => List a -> m (Doc HL)
|
||||
prettyTuple = map (parens . align . separate commaD) . traverse prettyM
|
||||
|
||||
export covering
|
||||
prettyArm : Pretty.HasEnv m => PrettyHL a =>
|
||||
(List BaseName, Doc HL, a) -> m (Doc HL)
|
||||
prettyArm (xs, pat, body) =
|
||||
pure $ hang 2 $ sep
|
||||
[hsep [pat, !darrowD],
|
||||
!(withPrec Outer $ unders T xs $ prettyM body)]
|
||||
|
||||
export covering
|
||||
prettyArms : Pretty.HasEnv m => PrettyHL a =>
|
||||
List (List BaseName, Doc HL, a) -> m (Doc HL)
|
||||
prettyArms = map (braces . align . sep) . traverse prettyArm
|
||||
|
||||
export covering
|
||||
prettyCase : Pretty.HasEnv m =>
|
||||
PrettyHL q => PrettyHL a => PrettyHL b => PrettyHL c =>
|
||||
q -> a -> BaseName -> b -> List (List BaseName, Doc HL, c) ->
|
||||
m (Doc HL)
|
||||
prettyCase pi elim r ret arms =
|
||||
pure $ align $ sep $
|
||||
[hsep [caseD, !(prettyQtyBinds [pi] elim)],
|
||||
hsep [returnD, !(prettyM r), !darrowD, !(under T r $ prettyM ret)],
|
||||
hsep [ofD, !(prettyArms arms)]]
|
||||
|
||||
|
||||
mutual
|
||||
export covering
|
||||
PrettyHL q => PrettyHL (Term q d n) where
|
||||
prettyM (TYPE l) =
|
||||
parensIfM App $ typeD <//> !(withPrec Arg $ prettyM l)
|
||||
prettyM (Pi qty x s t) =
|
||||
prettyM (Pi qty s (S [x] t)) =
|
||||
prettyBindType [qty] x s !arrowD t
|
||||
prettyM (Lam x t) =
|
||||
let GotLams {names, body, _} = getLams' [x] t.term Refl in
|
||||
prettyM (Lam (S x t)) =
|
||||
let GotLams {names, body, _} = getLams' x t.term Refl in
|
||||
prettyLams T (toList names) body
|
||||
prettyM (Sig x s t) =
|
||||
prettyBindType [] x s !timesD t
|
||||
prettyM (Sig s (S [x] t)) =
|
||||
prettyBindType {q} [] x s !timesD t
|
||||
prettyM (Pair s t) =
|
||||
let GotPairs {init, last, _} = getPairs t in
|
||||
prettyTuple $ s :: init ++ [last]
|
||||
prettyM (Eq _ (DUnused ty) l r) =
|
||||
prettyM (Eq (S _ (N ty)) l r) =
|
||||
parensIfM Eq !(withPrec InEq $ pure $
|
||||
sep [!(prettyM l) <++> !eqndD, !(prettyM r) <++> colonD, !(prettyM ty)])
|
||||
prettyM (Eq i (DUsed ty) l r) =
|
||||
sep [!(prettyM l) <++> !eqndD,
|
||||
!(prettyM r) <++> colonD, !(prettyM ty)])
|
||||
prettyM (Eq (S [i] (Y ty)) l r) =
|
||||
parensIfM App $
|
||||
eqD <++>
|
||||
sep [bracks !(withPrec Outer $ pure $ hang 2 $
|
||||
|
@ -58,8 +113,8 @@ mutual
|
|||
!(under D i $ prettyM ty)]),
|
||||
!(withPrec Arg $ prettyM l),
|
||||
!(withPrec Arg $ prettyM r)]
|
||||
prettyM (DLam i t) =
|
||||
let GotDLams {names, body, _} = getDLams' [i] t.term Refl in
|
||||
prettyM (DLam (S i t)) =
|
||||
let GotDLams {names, body, _} = getDLams' i t.term Refl in
|
||||
prettyLams D (toList names) body
|
||||
prettyM (E e) = bracks <$> prettyM e
|
||||
prettyM (CloT s th) =
|
||||
|
@ -78,7 +133,7 @@ mutual
|
|||
prettyM (e :@ s) =
|
||||
let GotArgs {fun, args, _} = getArgs' e [s] in
|
||||
prettyApps fun args
|
||||
prettyM (CasePair pi p r ret x y body) = do
|
||||
prettyM (CasePair pi p (S [r] ret) (S [x, y] body)) = do
|
||||
pat <- (parens . separate commaD . map (hl TVar)) <$>
|
||||
traverse prettyM [x, y]
|
||||
prettyCase pi p r ret [([x, y], pat, body)]
|
||||
|
@ -97,62 +152,10 @@ mutual
|
|||
[|withPrec SApp (prettyM e) </> prettyDSubst th|]
|
||||
|
||||
export covering
|
||||
{s : Nat} -> PrettyHL q => PrettyHL (ScopeTermN s q d n) where
|
||||
{s : Nat} -> PrettyHL q => PrettyHL (ScopedBody s (Term q d) n) where
|
||||
prettyM body = prettyM body.term
|
||||
|
||||
export covering
|
||||
prettyTSubst : Pretty.HasEnv m => PrettyHL q =>
|
||||
TSubst q d from to -> m (Doc HL)
|
||||
prettyTSubst s = prettySubstM prettyM (!ask).tnames TVar "[" "]" s
|
||||
|
||||
export covering
|
||||
prettyBindType : Pretty.HasEnv m => PrettyHL q =>
|
||||
List q -> Name -> Term q d n -> Doc HL ->
|
||||
ScopeTerm q d n -> m (Doc HL)
|
||||
prettyBindType qtys x s arr t =
|
||||
parensIfM Outer $ hang 2 $
|
||||
parens !(prettyQtyBinds qtys $ TV x) <++> arr
|
||||
<//> !(under T x $ prettyM t)
|
||||
|
||||
export covering
|
||||
prettyLams : Pretty.HasEnv m => PrettyHL q =>
|
||||
BinderSort -> List Name -> Term q _ _ -> m (Doc HL)
|
||||
prettyLams sort names body = do
|
||||
lam <- case sort of T => lamD; D => dlamD
|
||||
header <- sequence $ [hl TVar <$> prettyM x | x <- names] ++ [darrowD]
|
||||
body <- unders sort names $ prettyM body
|
||||
parensIfM Outer $ sep (lam :: header) <//> body
|
||||
|
||||
export covering
|
||||
prettyApps : Pretty.HasEnv m => PrettyHL f => PrettyHL a =>
|
||||
f -> List a -> m (Doc HL)
|
||||
prettyApps fun args =
|
||||
parensIfM App =<< withPrec Arg
|
||||
[|prettyM fun <//> (align . sep <$> traverse prettyM args)|]
|
||||
|
||||
export covering
|
||||
prettyTuple : Pretty.HasEnv m => PrettyHL a => List a -> m (Doc HL)
|
||||
prettyTuple = map (parens . align . separate commaD) . traverse prettyM
|
||||
|
||||
export covering
|
||||
prettyArm : Pretty.HasEnv m => PrettyHL a =>
|
||||
(List Name, Doc HL, a) -> m (Doc HL)
|
||||
prettyArm (xs, pat, body) =
|
||||
pure $ hang 2 $ sep
|
||||
[hsep [pat, !darrowD],
|
||||
!(withPrec Outer $ unders T xs $ prettyM body)]
|
||||
|
||||
export covering
|
||||
prettyArms : Pretty.HasEnv m => PrettyHL a =>
|
||||
List (List Name, Doc HL, a) -> m (Doc HL)
|
||||
prettyArms = map (braces . align . sep) . traverse prettyArm
|
||||
|
||||
export covering
|
||||
prettyCase : Pretty.HasEnv m =>
|
||||
PrettyHL q => PrettyHL a => PrettyHL b => PrettyHL c =>
|
||||
q -> a -> Name -> b -> List (List Name, Doc HL, c) -> m (Doc HL)
|
||||
prettyCase pi elim r ret arms =
|
||||
pure $ align $ sep $
|
||||
[hsep [caseD, !(prettyQtyBinds [pi] elim)],
|
||||
hsep [returnD, !(prettyM r), !darrowD, !(under T r $ prettyM ret)],
|
||||
hsep [ofD, !(prettyArms arms)]]
|
||||
|
|
|
@ -11,8 +11,8 @@ import public Data.Vect
|
|||
|
||||
public export %inline
|
||||
isLam : Term {} -> Bool
|
||||
isLam (Lam {}) = True
|
||||
isLam _ = False
|
||||
isLam (Lam _) = True
|
||||
isLam _ = False
|
||||
|
||||
public export
|
||||
0 NotLam : Pred $ Term {}
|
||||
|
@ -21,8 +21,8 @@ NotLam = No . isLam
|
|||
|
||||
public export %inline
|
||||
isDLam : Term {} -> Bool
|
||||
isDLam (DLam {}) = True
|
||||
isDLam _ = False
|
||||
isDLam (DLam _) = True
|
||||
isDLam _ = False
|
||||
|
||||
public export
|
||||
0 NotDLam : Pred $ Term {}
|
||||
|
@ -113,25 +113,25 @@ getDArgs e = getDArgs' e []
|
|||
|
||||
infixr 1 :\\
|
||||
public export
|
||||
absN : Vect m Name -> Term q d (m + n) -> Term q d n
|
||||
absN : Vect m BaseName -> Term q d (m + n) -> Term q d n
|
||||
absN {m = 0} [] s = s
|
||||
absN {m = S m} (x :: xs) s = Lam x $ TUsed $ absN xs $
|
||||
rewrite sym $ plusSuccRightSucc m n in s
|
||||
absN {m = S m} (x :: xs) s =
|
||||
Lam $ S [x] $ Y $ absN xs $ rewrite sym $ plusSuccRightSucc m n in s
|
||||
|
||||
public export %inline
|
||||
(:\\) : Vect m Name -> Term q d (m + n) -> Term q d n
|
||||
(:\\) : Vect m BaseName -> Term q d (m + n) -> Term q d n
|
||||
(:\\) = absN
|
||||
|
||||
|
||||
infixr 1 :\\%
|
||||
public export
|
||||
dabsN : Vect m Name -> Term q (m + d) n -> Term q d n
|
||||
dabsN : Vect m BaseName -> Term q (m + d) n -> Term q d n
|
||||
dabsN {m = 0} [] s = s
|
||||
dabsN {m = S m} (x :: xs) s = DLam x $ DUsed $ dabsN xs $
|
||||
rewrite sym $ plusSuccRightSucc m d in s
|
||||
dabsN {m = S m} (x :: xs) s =
|
||||
DLam $ S [x] $ Y $ dabsN xs $ rewrite sym $ plusSuccRightSucc m d in s
|
||||
|
||||
public export %inline
|
||||
(:\\%) : Vect m Name -> Term q (m + d) n -> Term q d n
|
||||
(:\\%) : Vect m BaseName -> Term q (m + d) n -> Term q d n
|
||||
(:\\%) = dabsN
|
||||
|
||||
|
||||
|
@ -139,17 +139,17 @@ public export
|
|||
record GetLams q d n where
|
||||
constructor GotLams
|
||||
{0 lams, rest : Nat}
|
||||
names : Vect lams Name
|
||||
names : Vect lams BaseName
|
||||
body : Term q d rest
|
||||
0 eq : lams + n = rest
|
||||
0 notLam : NotLam body
|
||||
|
||||
export
|
||||
getLams' : forall lams, rest.
|
||||
Vect lams Name -> Term q d rest -> (0 eq : lams + n = rest) ->
|
||||
Vect lams BaseName -> Term q d rest -> (0 eq : lams + n = rest) ->
|
||||
GetLams q d n
|
||||
getLams' xs s Refl = case nchoose $ isLam s of
|
||||
Left y => let Lam x body = s in
|
||||
Left y => let Lam (S [x] body) = s in
|
||||
getLams' (x :: xs) (assert_smaller s body.term) Refl
|
||||
Right n => GotLams xs s Refl n
|
||||
|
||||
|
@ -162,17 +162,17 @@ public export
|
|||
record GetDLams q d n where
|
||||
constructor GotDLams
|
||||
{0 lams, rest : Nat}
|
||||
names : Vect lams Name
|
||||
names : Vect lams BaseName
|
||||
body : Term q rest n
|
||||
0 eq : lams + d = rest
|
||||
0 notDLam : NotDLam body
|
||||
|
||||
export
|
||||
getDLams' : forall lams, rest.
|
||||
Vect lams Name -> Term q rest n -> (0 eq : lams + d = rest) ->
|
||||
Vect lams BaseName -> Term q rest n -> (0 eq : lams + d = rest) ->
|
||||
GetDLams q d n
|
||||
getDLams' is s Refl = case nchoose $ isDLam s of
|
||||
Left y => let DLam i body = s in
|
||||
Left y => let DLam (S [i] body) = s in
|
||||
getDLams' (i :: is) (assert_smaller s body.term) Refl
|
||||
Right n => GotDLams is s Refl n
|
||||
|
||||
|
|
|
@ -10,49 +10,53 @@ namespace CanDSubst
|
|||
interface CanDSubst (0 tm : Nat -> Nat -> Type) where
|
||||
(//) : tm dfrom n -> Lazy (DSubst dfrom dto) -> tm dto n
|
||||
|
||||
mutual
|
||||
||| does the minimal reasonable work:
|
||||
||| - deletes the closure around an atomic constant like `TYPE`
|
||||
||| - deletes an identity substitution
|
||||
||| - composes (lazily) with an existing top-level dim-closure
|
||||
||| - otherwise, wraps in a new closure
|
||||
export
|
||||
CanDSubst (Term q) where
|
||||
s // Shift SZ = s
|
||||
TYPE l // _ = TYPE l
|
||||
DCloT s ph // th = DCloT s $ ph . th
|
||||
s // th = DCloT s th
|
||||
||| does the minimal reasonable work:
|
||||
||| - deletes the closure around an atomic constant like `TYPE`
|
||||
||| - deletes an identity substitution
|
||||
||| - composes (lazily) with an existing top-level dim-closure
|
||||
||| - otherwise, wraps in a new closure
|
||||
export
|
||||
CanDSubst (Term q) where
|
||||
s // Shift SZ = s
|
||||
TYPE l // _ = TYPE l
|
||||
DCloT s ph // th = DCloT s $ ph . th
|
||||
s // th = DCloT s th
|
||||
|
||||
private
|
||||
subDArgs : Elim q dfrom n -> DSubst dfrom dto -> Elim q dto n
|
||||
subDArgs (f :% d) th = subDArgs f th :% (d // th)
|
||||
subDArgs e th = DCloE e th
|
||||
private
|
||||
subDArgs : Elim q dfrom n -> DSubst dfrom dto -> Elim q dto n
|
||||
subDArgs (f :% d) th = subDArgs f th :% (d // th)
|
||||
subDArgs e th = DCloE e th
|
||||
|
||||
||| does the minimal reasonable work:
|
||||
||| - deletes the closure around a term variable
|
||||
||| - deletes an identity substitution
|
||||
||| - composes (lazily) with an existing top-level dim-closure
|
||||
||| - immediately looks up bound variables in a
|
||||
||| top-level sequence of dimension applications
|
||||
||| - otherwise, wraps in a new closure
|
||||
export
|
||||
CanDSubst (Elim q) where
|
||||
e // Shift SZ = e
|
||||
F x // _ = F x
|
||||
B i // _ = B i
|
||||
f :% d // th = subDArgs (f :% d) th
|
||||
DCloE e ph // th = DCloE e $ ph . th
|
||||
e // th = DCloE e th
|
||||
||| does the minimal reasonable work:
|
||||
||| - deletes the closure around a term variable
|
||||
||| - deletes an identity substitution
|
||||
||| - composes (lazily) with an existing top-level dim-closure
|
||||
||| - immediately looks up bound variables in a
|
||||
||| top-level sequence of dimension applications
|
||||
||| - otherwise, wraps in a new closure
|
||||
export
|
||||
CanDSubst (Elim q) where
|
||||
e // Shift SZ = e
|
||||
F x // _ = F x
|
||||
B i // _ = B i
|
||||
f :% d // th = subDArgs (f :% d) th
|
||||
DCloE e ph // th = DCloE e $ ph . th
|
||||
e // th = DCloE e th
|
||||
|
||||
export
|
||||
CanDSubst (ScopeTermN s q) where
|
||||
TUsed body // th = TUsed $ body // th
|
||||
TUnused body // th = TUnused $ body // th
|
||||
namespace DSubst.ScopeTermN
|
||||
export %inline
|
||||
(//) : ScopeTermN s q dfrom n -> Lazy (DSubst dfrom dto) ->
|
||||
ScopeTermN s q dto n
|
||||
S ns (Y body) // th = S ns $ Y $ body // th
|
||||
S ns (N body) // th = S ns $ N $ body // th
|
||||
|
||||
export
|
||||
{s : Nat} -> CanDSubst (DScopeTermN s q) where
|
||||
DUsed body // th = DUsed $ body // pushN s th
|
||||
DUnused body // th = DUnused $ body // th
|
||||
namespace DSubst.DScopeTermN
|
||||
export %inline
|
||||
(//) : {s : Nat} ->
|
||||
DScopeTermN s q dfrom n -> Lazy (DSubst dfrom dto) ->
|
||||
DScopeTermN s q dto n
|
||||
S ns (Y body) // th = S ns $ Y $ body // pushN s th
|
||||
S ns (N body) // th = S ns $ N $ body // th
|
||||
|
||||
|
||||
export %inline FromVar (Elim q d) where fromVar = B
|
||||
|
@ -94,15 +98,21 @@ CanTSubst Term where
|
|||
Shift SZ => s
|
||||
th => CloT s th
|
||||
|
||||
export %inline
|
||||
{s : Nat} -> CanTSubst (ScopeTermN s) where
|
||||
TUsed body // th = TUsed $ body // pushN s th
|
||||
TUnused body // th = TUnused $ body // th
|
||||
namespace ScopeTermN
|
||||
export %inline
|
||||
(//) : {s : Nat} ->
|
||||
ScopeTermN s q d from -> Lazy (TSubst q d from to) ->
|
||||
ScopeTermN s q d to
|
||||
S ns (Y body) // th = S ns $ Y $ body // pushN s th
|
||||
S ns (N body) // th = S ns $ N $ body // th
|
||||
|
||||
export %inline
|
||||
{s : Nat} -> CanTSubst (DScopeTermN s) where
|
||||
DUsed body // th = DUsed $ body // map (// shift s) th
|
||||
DUnused body // th = DUnused $ body // th
|
||||
namespace DScopeTermN
|
||||
export %inline
|
||||
(//) : {s : Nat} ->
|
||||
DScopeTermN s q d from -> Lazy (TSubst q d from to) ->
|
||||
DScopeTermN s q d to
|
||||
S ns (Y body) // th = S ns $ Y $ body // map (// shift s) th
|
||||
S ns (N body) // th = S ns $ N $ body // th
|
||||
|
||||
export %inline CanShift (Term q d) where s // by = s // Shift by
|
||||
export %inline CanShift (Elim q d) where e // by = e // Shift by
|
||||
|
@ -136,23 +146,34 @@ weakE : {default 1 by : Nat} -> Elim q d n -> Elim q d (by + n)
|
|||
weakE t = t // shift by
|
||||
|
||||
|
||||
namespace ScopeTermN
|
||||
export %inline
|
||||
(.term) : {s : Nat} -> ScopeTermN s q d n -> Term q d (s + n)
|
||||
(TUsed body).term = body
|
||||
(TUnused body).term = weakT body {by = s}
|
||||
parameters {s : Nat}
|
||||
namespace ScopeTermBody
|
||||
export %inline
|
||||
(.term) : ScopedBody s (Term q d) n -> Term q d (s + n)
|
||||
(Y b).term = b
|
||||
(N b).term = weakT b {by = s}
|
||||
|
||||
namespace DScopeTermN
|
||||
export %inline
|
||||
(.term) : {s : Nat} -> DScopeTermN s q d n -> Term q (s + d) n
|
||||
(DUsed body).term = body
|
||||
(DUnused body).term = dweakT body {by = s}
|
||||
namespace ScopeTermN
|
||||
export %inline
|
||||
(.term) : ScopeTermN s q d n -> Term q d (s + n)
|
||||
t.term = t.body.term
|
||||
|
||||
namespace DScopeTermBody
|
||||
export %inline
|
||||
(.term) : ScopedBody s (\d => Term q d n) d -> Term q (s + d) n
|
||||
(Y b).term = b
|
||||
(N b).term = dweakT b {by = s}
|
||||
|
||||
namespace DScopeTermN
|
||||
export %inline
|
||||
(.term) : DScopeTermN s q d n -> Term q (s + d) n
|
||||
t.term = t.body.term
|
||||
|
||||
|
||||
export %inline
|
||||
subN : ScopeTermN s q d n -> Vect s (Elim q d n) -> Term q d n
|
||||
subN (TUsed body) es = body // fromVect es
|
||||
subN (TUnused body) _ = body
|
||||
subN (S _ (Y body)) es = body // fromVect es
|
||||
subN (S _ (N body)) _ = body
|
||||
|
||||
export %inline
|
||||
sub1 : ScopeTerm q d n -> Elim q d n -> Term q d n
|
||||
|
@ -160,8 +181,8 @@ sub1 t e = subN t [e]
|
|||
|
||||
export %inline
|
||||
dsubN : DScopeTermN s q d n -> Vect s (Dim d) -> Term q d n
|
||||
dsubN (DUsed body) ps = body // fromVect ps
|
||||
dsubN (DUnused body) _ = body
|
||||
dsubN (S _ (Y body)) ps = body // fromVect ps
|
||||
dsubN (S _ (N body)) _ = body
|
||||
|
||||
export %inline
|
||||
dsub1 : DScopeTerm q d n -> Dim d -> Term q d n
|
||||
|
|
|
@ -28,29 +28,9 @@ popQ pi = popQs [< pi]
|
|||
|
||||
|
||||
|
||||
private %inline
|
||||
weakI : IsQty q => InferResult' q d n -> InferResult' q d (S n)
|
||||
weakI = {type $= weakT, qout $= (:< zero)}
|
||||
|
||||
private
|
||||
lookupBound : IsQty q => q -> Var n -> TContext q d n -> InferResult' q d n
|
||||
lookupBound pi VZ (ctx :< ty) =
|
||||
InfRes {type = weakT ty, qout = (zero <$ ctx) :< pi}
|
||||
lookupBound pi (VS i) (ctx :< _) =
|
||||
weakI $ lookupBound pi i ctx
|
||||
|
||||
private %inline
|
||||
lookupFree : CanTC' q g m => Name -> m (Definition' q g)
|
||||
lookupFree x = lookupFree' !ask x
|
||||
|
||||
|
||||
parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||||
mutual
|
||||
-- [todo] it seems like the options here for dealing with substitutions are
|
||||
-- to either push them or parametrise the whole typechecker over ambient
|
||||
-- substitutions. both of them seem like the same amount of work for the
|
||||
-- computer but pushing is less work for the me
|
||||
|
||||
||| "Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ"
|
||||
|||
|
||||
||| `check ctx sg subj ty` checks that in the context `ctx`, the term
|
||||
|
@ -116,19 +96,19 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
|||
unless (k < l) $ throwError $ BadUniverse k l
|
||||
pure $ zeroFor ctx
|
||||
|
||||
check' ctx sg (Pi qty _ arg res) ty = do
|
||||
check' ctx sg (Pi qty arg res) ty = do
|
||||
l <- expectTYPE !ask ty
|
||||
expectEqualQ zero sg.fst
|
||||
-- if Ψ | Γ ⊢₀ A ⇐ Type ℓ
|
||||
check0 ctx arg (TYPE l)
|
||||
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type ℓ
|
||||
case res of
|
||||
TUsed res => check0 (extendTy arg ctx) res (TYPE l)
|
||||
TUnused res => check0 ctx res (TYPE l)
|
||||
case res.body of
|
||||
Y res => check0 (extendTy arg ctx) res (TYPE l)
|
||||
N res => check0 ctx res (TYPE l)
|
||||
-- then Ψ | Γ ⊢₀ (π·x : A) → B ⇐ Type ℓ
|
||||
pure $ zeroFor ctx
|
||||
|
||||
check' ctx sg (Lam _ body) ty = do
|
||||
check' ctx sg (Lam body) ty = do
|
||||
(qty, arg, res) <- expectPi !ask ty
|
||||
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
|
||||
-- with ρ ≤ σπ
|
||||
|
@ -137,15 +117,15 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
|||
-- then Ψ | Γ ⊢ σ · (λx ⇒ t) ⇐ (π·x : A) → B ⊳ Σ
|
||||
popQ qty' qout
|
||||
|
||||
check' ctx sg (Sig _ fst snd) ty = do
|
||||
check' ctx sg (Sig fst snd) ty = do
|
||||
l <- expectTYPE !ask ty
|
||||
expectEqualQ zero sg.fst
|
||||
-- if Ψ | Γ ⊢₀ A ⇐ Type ℓ
|
||||
check0 ctx fst (TYPE l)
|
||||
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type ℓ
|
||||
case snd of
|
||||
TUsed snd => check0 (extendTy fst ctx) snd (TYPE l)
|
||||
TUnused snd => check0 ctx snd (TYPE l)
|
||||
case snd.body of
|
||||
Y snd => check0 (extendTy fst ctx) snd (TYPE l)
|
||||
N snd => check0 ctx snd (TYPE l)
|
||||
-- then Ψ | Γ ⊢₀ (x : A) × B ⇐ Type ℓ
|
||||
pure $ zeroFor ctx
|
||||
|
||||
|
@ -159,13 +139,13 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
|||
-- then Ψ | Γ ⊢ σ · (s, t) ⇐ (x : A) × B ⊳ Σ₁ + Σ₂
|
||||
pure $ qfst + qsnd
|
||||
|
||||
check' ctx sg (Eq _ t l r) ty = do
|
||||
check' ctx sg (Eq t l r) ty = do
|
||||
u <- expectTYPE !ask ty
|
||||
expectEqualQ zero sg.fst
|
||||
-- if Ψ, i | Γ ⊢₀ A ⇐ Type ℓ
|
||||
case t of
|
||||
DUsed t => check0 (extendDim ctx) t (TYPE u)
|
||||
DUnused t => check0 ctx t (TYPE u)
|
||||
case t.body of
|
||||
Y t => check0 (extendDim ctx) t (TYPE u)
|
||||
N t => check0 ctx t (TYPE u)
|
||||
-- if Ψ | Γ ⊢₀ l ⇐ A‹0›
|
||||
check0 ctx t.zero l
|
||||
-- if Ψ | Γ ⊢₀ r ⇐ A‹1›
|
||||
|
@ -173,7 +153,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
|||
-- then Ψ | Γ ⊢₀ Eq [i ⇒ A] l r ⇐ Type ℓ
|
||||
pure $ zeroFor ctx
|
||||
|
||||
check' ctx sg (DLam _ body) ty = do
|
||||
check' ctx sg (DLam body) ty = do
|
||||
(ty, l, r) <- expectEq !ask ty
|
||||
-- if Ψ, i | Γ ⊢ σ · t ⇐ A ⊳ Σ
|
||||
qout <- checkC (extendDim ctx) sg body.term ty.term
|
||||
|
@ -204,11 +184,21 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
|||
expectCompatQ sg.fst g.qty
|
||||
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
|
||||
pure $ InfRes {type = g.type.get, qout = zeroFor ctx}
|
||||
where
|
||||
lookupFree : Name -> m (Definition q)
|
||||
lookupFree x = lookupFree' !ask x
|
||||
|
||||
infer' ctx sg (B i) =
|
||||
-- if x : A ∈ Γ
|
||||
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ (𝟎, σ·x, 𝟎)
|
||||
pure $ lookupBound sg.fst i ctx.tctx
|
||||
where
|
||||
lookupBound : q -> Var n -> TContext q d n -> InferResult' q d n
|
||||
lookupBound pi VZ (ctx :< ty) =
|
||||
InfRes {type = weakT ty, qout = zeroFor ctx :< pi}
|
||||
lookupBound pi (VS i) (ctx :< _) =
|
||||
let InfRes {type, qout} = lookupBound pi i ctx in
|
||||
InfRes {type = weakT type, qout = qout :< zero}
|
||||
|
||||
infer' ctx sg (fun :@ arg) = do
|
||||
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
|
||||
|
@ -222,7 +212,7 @@ parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
|||
qout = funres.qout + argout
|
||||
}
|
||||
|
||||
infer' ctx sg (CasePair pi pair _ ret _ _ body) = do
|
||||
infer' ctx sg (CasePair pi pair ret body) = do
|
||||
-- if 1 ≤ π
|
||||
expectCompatQ one pi
|
||||
-- if Ψ | Γ ⊢ 1 · pair ⇒ (x : A) × B ⊳ Σ₁
|
||||
|
|
|
@ -40,6 +40,10 @@ namespace TContext
|
|||
pushD : TContext q d n -> TContext q (S d) n
|
||||
pushD tel = map (// shift 1) tel
|
||||
|
||||
export %inline
|
||||
zeroFor : IsQty q => Context tm n -> QOutput q n
|
||||
zeroFor ctx = zero <$ ctx
|
||||
|
||||
namespace TyContext
|
||||
public export %inline
|
||||
empty : {d : Nat} -> TyContext q d 0
|
||||
|
@ -75,7 +79,7 @@ namespace QOutput
|
|||
|
||||
export %inline
|
||||
zeroFor : TyContext q _ n -> QOutput q n
|
||||
zeroFor ctx = zero <$ ctx.tctx
|
||||
zeroFor ctx = zeroFor ctx.tctx
|
||||
|
||||
|
||||
public export
|
||||
|
|
|
@ -24,24 +24,24 @@ mutual
|
|||
TYPE k == TYPE l = k == l
|
||||
TYPE _ == _ = False
|
||||
|
||||
Pi qty1 _ arg1 res1 == Pi qty2 _ arg2 res2 =
|
||||
Pi qty1 arg1 res1 == Pi qty2 arg2 res2 =
|
||||
qty1 == qty2 && arg1 == arg2 && res1 == res2
|
||||
Pi {} == _ = False
|
||||
|
||||
Lam _ body1 == Lam _ body2 = body1 == body2
|
||||
Lam body1 == Lam body2 = body1 == body2
|
||||
Lam {} == _ = False
|
||||
|
||||
Sig _ fst1 snd1 == Sig _ fst2 snd2 = fst1 == fst2 && snd1 == snd2
|
||||
Sig fst1 snd1 == Sig fst2 snd2 = fst1 == fst2 && snd1 == snd2
|
||||
Sig {} == _ = False
|
||||
|
||||
Pair fst1 snd1 == Pair fst2 snd2 = fst1 == fst2 && snd1 == snd2
|
||||
Pair {} == _ = False
|
||||
|
||||
Eq _ ty1 l1 r1 == Eq _ ty2 l2 r2 =
|
||||
Eq ty1 l1 r1 == Eq ty2 l2 r2 =
|
||||
ty1 == ty2 && l1 == l2 && r1 == r2
|
||||
Eq {} == _ = False
|
||||
|
||||
DLam _ body1 == DLam _ body2 = body1 == body2
|
||||
DLam body1 == DLam body2 = body1 == body2
|
||||
DLam {} == _ = False
|
||||
|
||||
E e == E f = e == f
|
||||
|
@ -70,7 +70,7 @@ mutual
|
|||
(fun1 :@ arg1) == (fun2 :@ arg2) = fun1 == fun2 && arg1 == arg2
|
||||
(_ :@ _) == _ = False
|
||||
|
||||
CasePair q1 p1 _ r1 _ _ b1 == CasePair q2 p2 _ r2 _ _ b2 =
|
||||
CasePair q1 p1 r1 b1 == CasePair q2 p2 r2 b2 =
|
||||
q1 == q2 && p1 == p2 && r1 == r2 && b1 == b2
|
||||
CasePair {} == _ = False
|
||||
|
||||
|
@ -93,18 +93,14 @@ mutual
|
|||
DCloE {} == _ = False
|
||||
|
||||
export covering
|
||||
Eq q => Eq (ScopeTermN s q d n) where
|
||||
TUsed s == TUsed t = s == t
|
||||
TUnused s == TUnused t = s == t
|
||||
TUsed _ == TUnused _ = False
|
||||
TUnused _ == TUsed _ = False
|
||||
(forall n. Eq (f n)) => Eq (ScopedBody s f n) where
|
||||
Y x == Y y = x == y
|
||||
N x == N y = x == y
|
||||
_ == _ = False
|
||||
|
||||
export covering
|
||||
Eq q => Eq (DScopeTermN s q d n) where
|
||||
DUsed s == DUsed t = s == t
|
||||
DUnused s == DUnused t = s == t
|
||||
DUsed _ == DUnused _ = False
|
||||
DUnused _ == DUsed _ = False
|
||||
(forall n. Eq (f n)) => Eq (Scoped s f n) where
|
||||
S _ x == S _ y = x == y
|
||||
|
||||
export covering
|
||||
PrettyHL q => Show (Term q d n) where
|
||||
|
|
|
@ -141,10 +141,10 @@ tests = "equality & subtyping" :- [
|
|||
equalT empty (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
|
||||
(["x", "y"] :\\ BVT 1)
|
||||
(["x", "y"] :\\ BVT 0),
|
||||
testEq "λ x ⇒ [a] = λ x ⇒ [a] (TUsed vs TUnused)" $
|
||||
testEq "λ x ⇒ [a] = λ x ⇒ [a] (Y vs N)" $
|
||||
equalT empty (Arr Zero (FT "B") (FT "A"))
|
||||
(Lam "x" $ TUsed $ FT "a")
|
||||
(Lam "x" $ TUnused $ FT "a"),
|
||||
(Lam $ S ["x"] $ Y $ FT "a")
|
||||
(Lam $ S ["x"] $ N $ FT "a"),
|
||||
testEq "λ x ⇒ [f [x]] = [f] (η)" $
|
||||
equalT empty (Arr One (FT "A") (FT "A"))
|
||||
(["x"] :\\ E (F "f" :@ BVT 0))
|
||||
|
@ -164,7 +164,7 @@ tests = "equality & subtyping" :- [
|
|||
|
||||
"equalities and uip" :-
|
||||
let refl : Term q d n -> Term q d n -> Elim q d n
|
||||
refl a x = (DLam "_" $ DUnused x) :# (Eq0 a x x)
|
||||
refl a x = (DLam $ S ["_"] $ N x) :# (Eq0 a x x)
|
||||
in
|
||||
[
|
||||
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x) ∷ (x ≡ x : A)""#,
|
||||
|
@ -208,7 +208,7 @@ tests = "equality & subtyping" :- [
|
|||
{globals = defGlobals `mergeLeft` fromList
|
||||
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
|
||||
let ty : forall n. Term Three 0 n
|
||||
:= Sig "_" (FT "E") $ TUnused $ FT "E" in
|
||||
:= Sig (FT "E") $ S ["_"] $ N $ FT "E" in
|
||||
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
|
||||
|
||||
testEq "E ≔ a ≡ a' : A, F ≔ E × E ∥ x : F, y : F ⊢ x = y"
|
||||
|
@ -235,11 +235,11 @@ tests = "equality & subtyping" :- [
|
|||
equalT empty (FT "A")
|
||||
(CloT (BVT 1) (F "a" ::: F "b" ::: id))
|
||||
(FT "b"),
|
||||
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (TUnused)" $
|
||||
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (N)" $
|
||||
equalT empty (Arr Zero (FT "B") (FT "A"))
|
||||
(CloT (Lam "y" $ TUnused $ BVT 0) (F "a" ::: id))
|
||||
(Lam "y" $ TUnused $ FT "a"),
|
||||
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (TUsed)" $
|
||||
(CloT (Lam $ S ["y"] $ N $ BVT 0) (F "a" ::: id))
|
||||
(Lam $ S ["y"] $ N $ FT "a"),
|
||||
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (Y)" $
|
||||
equalT empty (Arr Zero (FT "B") (FT "A"))
|
||||
(CloT (["y"] :\\ BVT 1) (F "a" ::: id))
|
||||
(["y"] :\\ FT "a")
|
||||
|
|
|
@ -4,124 +4,113 @@ import Quox.Syntax as Lib
|
|||
import Quox.Syntax.Qty.Three
|
||||
import Quox.Equal
|
||||
import TermImpls
|
||||
import TypingImpls
|
||||
import TAP
|
||||
|
||||
|
||||
testWhnf : Eq b => Show b => (a -> (Subset b _)) -> String -> a -> b -> Test
|
||||
testWhnf whnf label from to = test "\{label} (whnf)" $ do
|
||||
let result = fst (whnf from)
|
||||
unless (result == to) $
|
||||
Left [("exp", to), ("got", result)] {a = List (String, b)}
|
||||
parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex err}
|
||||
{auto _ : ToInfo err}
|
||||
{auto _ : forall d, n. Eq (tm Three d n)}
|
||||
{auto _ : forall d, n. Show (tm Three d n)}
|
||||
{default empty defs : Definitions Three}
|
||||
{default 0 d, n : Nat}
|
||||
testWhnf : String -> tm Three d n -> tm Three d n -> Test
|
||||
testWhnf label from to = test "\{label} (whnf)" $ do
|
||||
result <- bimap toInfo fst $ whnf defs from
|
||||
unless (result == to) $ Left [("exp", show to), ("got", show result)]
|
||||
|
||||
testNoStep : Eq a => Show a => (a -> (Subset a _)) -> String -> a -> Test
|
||||
testNoStep whnf label e = test "\{label} (no step)" $ do
|
||||
let result = fst (whnf e)
|
||||
unless (result == e) $ Left [("reduced", result)] {a = List (String, a)}
|
||||
|
||||
|
||||
|
||||
parameters {default empty defs : Definitions Three} {default 0 d, n : Nat}
|
||||
testWhnfT : String -> Term Three d n -> Term Three d n -> Test
|
||||
testWhnfT = testWhnf (whnf defs)
|
||||
|
||||
testWhnfE : String -> Elim Three d n -> Elim Three d n -> Test
|
||||
testWhnfE = testWhnf (whnf defs)
|
||||
|
||||
testNoStepE : String -> Elim Three d n -> Test
|
||||
testNoStepE = testNoStep (whnf defs)
|
||||
|
||||
testNoStepT : String -> Term Three d n -> Test
|
||||
testNoStepT = testNoStep (whnf defs)
|
||||
testNoStep : String -> tm Three d n -> Test
|
||||
testNoStep label e = testWhnf label e e
|
||||
|
||||
|
||||
tests = "whnf" :- [
|
||||
"head constructors" :- [
|
||||
testNoStepT "★₀" $ TYPE 0,
|
||||
testNoStepT "[A] ⊸ [B]" $
|
||||
testNoStep "★₀" $ TYPE 0,
|
||||
testNoStep "[A] ⊸ [B]" $
|
||||
Arr One (FT "A") (FT "B"),
|
||||
testNoStepT "(x: [A]) ⊸ [B [x]]" $
|
||||
Pi One "x" (FT "A") (TUsed $ E $ F "B" :@ BVT 0),
|
||||
testNoStepT "λx. [x]" $
|
||||
Lam "x" $ TUsed $ BVT 0,
|
||||
testNoStepT "[f [a]]" $
|
||||
testNoStep "(x: [A]) ⊸ [B [x]]" $
|
||||
Pi One (FT "A") (S ["x"] $ Y $ E $ F "B" :@ BVT 0),
|
||||
testNoStep "λx. [x]" $
|
||||
Lam $ S ["x"] $ Y $ BVT 0,
|
||||
testNoStep "[f [a]]" $
|
||||
E $ F "f" :@ FT "a"
|
||||
],
|
||||
|
||||
|
||||
"neutrals" :- [
|
||||
testNoStepE "x" {n = 1} $ BV 0,
|
||||
testNoStepE "a" $ F "a",
|
||||
testNoStepE "f [a]" $ F "f" :@ FT "a",
|
||||
testNoStepE "★₀ ∷ ★₁" $ TYPE 0 :# TYPE 1
|
||||
testNoStep "x" {n = 1} $ BV 0,
|
||||
testNoStep "a" $ F "a",
|
||||
testNoStep "f [a]" $ F "f" :@ FT "a",
|
||||
testNoStep "★₀ ∷ ★₁" $ TYPE 0 :# TYPE 1
|
||||
],
|
||||
|
||||
"redexes" :- [
|
||||
testWhnfE "[a] ∷ [A]"
|
||||
testWhnf "[a] ∷ [A]"
|
||||
(FT "a" :# FT "A")
|
||||
(F "a"),
|
||||
testWhnfT "[★₁ ∷ ★₃]"
|
||||
testWhnf "[★₁ ∷ ★₃]"
|
||||
(E (TYPE 1 :# TYPE 3))
|
||||
(TYPE 1),
|
||||
testWhnfE "(λx. [x] ∷ [A] ⊸ [A]) [a]"
|
||||
((Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||
testWhnf "(λx. [x] ∷ [A] ⊸ [A]) [a]"
|
||||
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||
(F "a")
|
||||
],
|
||||
|
||||
"definitions" :- [
|
||||
testWhnfE "a (transparent)"
|
||||
testWhnf "a (transparent)"
|
||||
{defs = fromList [("a", mkDef Zero (TYPE 1) (TYPE 0))]}
|
||||
(F "a") (TYPE 0 :# TYPE 1)
|
||||
],
|
||||
|
||||
"elim closure" :- [
|
||||
testWhnfE "x{}" {n = 1}
|
||||
testWhnf "x{}" {n = 1}
|
||||
(CloE (BV 0) id)
|
||||
(BV 0),
|
||||
testWhnfE "x{a/x}"
|
||||
testWhnf "x{a/x}"
|
||||
(CloE (BV 0) (F "a" ::: id))
|
||||
(F "a"),
|
||||
testWhnfE "x{x/x,a/y}" {n = 1}
|
||||
testWhnf "x{x/x,a/y}" {n = 1}
|
||||
(CloE (BV 0) (BV 0 ::: F "a" ::: id))
|
||||
(BV 0),
|
||||
testWhnfE "x{(y{a/y})/x}"
|
||||
testWhnf "x{(y{a/y})/x}"
|
||||
(CloE (BV 0) ((CloE (BV 0) (F "a" ::: id)) ::: id))
|
||||
(F "a"),
|
||||
testWhnfE "(x y){f/x,a/y}"
|
||||
testWhnf "(x y){f/x,a/y}"
|
||||
(CloE (BV 0 :@ BVT 1) (F "f" ::: F "a" ::: id))
|
||||
(F "f" :@ FT "a"),
|
||||
testWhnfE "([y] ∷ [x]){A/x}" {n = 1}
|
||||
testWhnf "([y] ∷ [x]){A/x}" {n = 1}
|
||||
(CloE (BVT 1 :# BVT 0) (F "A" ::: id))
|
||||
(BV 0),
|
||||
testWhnfE "([y] ∷ [x]){A/x,a/y}"
|
||||
testWhnf "([y] ∷ [x]){A/x,a/y}"
|
||||
(CloE (BVT 1 :# BVT 0) (F "A" ::: F "a" ::: id))
|
||||
(F "a")
|
||||
],
|
||||
|
||||
"term closure" :- [
|
||||
testWhnfT "(λy. x){a/x}"
|
||||
(CloT (Lam "y" $ TUnused $ BVT 0) (F "a" ::: id))
|
||||
(Lam "y" $ TUnused $ FT "a"),
|
||||
testWhnfT "(λy. y){a/x}"
|
||||
(CloT (Lam "y" $ TUsed $ BVT 0) (F "a" ::: id))
|
||||
(Lam "y" $ TUsed $ BVT 0)
|
||||
testWhnf "(λy. x){a/x}"
|
||||
(CloT (Lam $ S ["y"] $ N $ BVT 0) (F "a" ::: id))
|
||||
(Lam $ S ["y"] $ N $ FT "a"),
|
||||
testWhnf "(λy. y){a/x}"
|
||||
(CloT (["y"] :\\ BVT 0) (F "a" ::: id))
|
||||
(["y"] :\\ BVT 0)
|
||||
],
|
||||
|
||||
"looking inside […]" :- [
|
||||
testWhnfT "[(λx. x ∷ A ⊸ A) [a]]"
|
||||
(E $ (Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||
testWhnf "[(λx. x ∷ A ⊸ A) [a]]"
|
||||
(E $ ((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
||||
(FT "a")
|
||||
],
|
||||
|
||||
"nested redex" :- [
|
||||
note "whnf only looks at top level redexes",
|
||||
testNoStepT "λy. [(λx. [x] ∷ [A] ⊸ [A]) [y]]" $
|
||||
Lam "y" $ TUsed $ E $
|
||||
(Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ BVT 0,
|
||||
testNoStepE "f [(λx. [x] ∷ [A] ⊸ [A]) [a]]" $
|
||||
testNoStep "λy. [(λx. [x] ∷ [A] ⊸ [A]) [y]]" $
|
||||
["y"] :\\ E (((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ BVT 0),
|
||||
testNoStep "f [(λx. [x] ∷ [A] ⊸ [A]) [a]]" $
|
||||
F "a" :@
|
||||
E ((Lam "x" (TUsed $ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a"),
|
||||
testNoStepT "λx. [y [x]]{x/x,a/y}" {n = 1} $
|
||||
Lam "x" $ TUsed $ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id),
|
||||
testNoStepE "f ([y [x]]{x/x,a/y})" {n = 1} $
|
||||
E (((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a"),
|
||||
testNoStep "λx. [y [x]]{x/x,a/y}" {n = 1} $
|
||||
["x"] :\\ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id),
|
||||
testNoStep "f ([y [x]]{x/x,a/y})" {n = 1} $
|
||||
F "f" :@ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id)
|
||||
]
|
||||
]
|
||||
|
|
|
@ -36,8 +36,8 @@ inj act = do
|
|||
|
||||
reflTy : IsQty q => Term q d n
|
||||
reflTy =
|
||||
Pi zero "A" (TYPE 0) $ TUsed $
|
||||
Pi one "x" (BVT 0) $ TUsed $
|
||||
Pi zero (TYPE 0) $ S ["A"] $ Y $
|
||||
Pi one (BVT 0) $ S ["x"] $ Y $
|
||||
Eq0 (BVT 1) (BVT 0) (BVT 0)
|
||||
|
||||
reflDef : IsQty q => Term q d n
|
||||
|
@ -56,8 +56,8 @@ defGlobals = fromList
|
|||
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
|
||||
("g", mkAbstract Any $ Arr One (FT "A") (FT "B")),
|
||||
("f2", mkAbstract Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "A")),
|
||||
("p", mkAbstract Any $ Pi One "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0),
|
||||
("q", mkAbstract Any $ Pi One "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0),
|
||||
("p", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0),
|
||||
("q", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0),
|
||||
("refl", mkDef Any reflTy reflDef)]
|
||||
|
||||
parameters (label : String) (act : Lazy (M ()))
|
||||
|
@ -139,7 +139,7 @@ tests = "typechecker" :- [
|
|||
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0),
|
||||
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
|
||||
check_ (ctx [<]) szero
|
||||
(Pi One "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0)
|
||||
(Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0)
|
||||
(TYPE 0),
|
||||
testTCFail "0 · A ⊸ P ⇍ ★₀" $
|
||||
check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0),
|
||||
|
@ -207,21 +207,20 @@ tests = "typechecker" :- [
|
|||
|
||||
"equalities" :- [
|
||||
testTC "1 · (λᴰ i ⇒ a) ⇐ a ≡ a" $
|
||||
check_ (ctx [<]) sone (DLam "i" $ DUnused $ FT "a")
|
||||
check_ (ctx [<]) sone (DLam $ S ["i"] $ N $ FT "a")
|
||||
(Eq0 (FT "A") (FT "a") (FT "a")),
|
||||
testTC "0 · (λ p q ⇒ λᴰ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
|
||||
check_ (ctx [<]) szero
|
||||
(Lam "p" $ TUsed $ Lam "q" $ TUnused $
|
||||
DLam "i" $ DUnused $ BVT 0)
|
||||
(Pi Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $ TUsed $
|
||||
Pi Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $ TUsed $
|
||||
(Lam $ S ["p"] $ Y $ Lam $ S ["q"] $ N $ DLam $ S ["i"] $ N $ BVT 0)
|
||||
(Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["p"] $ Y $
|
||||
Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["q"] $ Y $
|
||||
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
|
||||
testTC "0 · (λ p q ⇒ λᴰ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
|
||||
check_ (ctx [<]) szero
|
||||
(Lam "p" $ TUnused $ Lam "q" $ TUsed $
|
||||
DLam "i" $ DUnused $ BVT 0)
|
||||
(Pi Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $ TUsed $
|
||||
Pi Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $ TUsed $
|
||||
(Lam $ S ["p"] $ N $ Lam $ S ["q"] $ Y $
|
||||
DLam $ S ["i"] $ N $ BVT 0)
|
||||
(Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["p"] $ Y $
|
||||
Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["q"] $ Y $
|
||||
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0))
|
||||
],
|
||||
|
||||
|
@ -233,11 +232,11 @@ tests = "typechecker" :- [
|
|||
testTC "cong" $
|
||||
check_ (ctx [<]) sone
|
||||
(["x", "y", "xy"] :\\ ["i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
|
||||
(Pi Zero "x" (FT "A") $ TUsed $
|
||||
Pi Zero "y" (FT "A") $ TUsed $
|
||||
Pi One "xy" (Eq0 (FT "A") (BVT 1) (BVT 0)) $ TUsed $
|
||||
Eq "i" (DUsed $ E $ F "P" :@ E (BV 0 :% BV 0))
|
||||
(E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)),
|
||||
(Pi Zero (FT "A") $ S ["x"] $ Y $
|
||||
Pi Zero (FT "A") $ S ["y"] $ Y $
|
||||
Pi One (Eq0 (FT "A") (BVT 1) (BVT 0)) $ S ["xy"] $ Y $
|
||||
Eq (S ["i"] $ Y $ E $ F "P" :@ E (BV 0 :% BV 0))
|
||||
(E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)),
|
||||
note "0·A : Type, 0·P : ω·A → Type,",
|
||||
note "ω·p q : (1·x : A) → P x",
|
||||
note "⊢",
|
||||
|
@ -246,11 +245,12 @@ tests = "typechecker" :- [
|
|||
testTC "funext" $
|
||||
check_ (ctx [<]) sone
|
||||
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
|
||||
(Pi One "eq"
|
||||
(Pi One "x" (FT "A") $ TUsed $
|
||||
(Pi One
|
||||
(Pi One (FT "A") $ S ["x"] $ Y $
|
||||
Eq0 (E $ F "P" :@ BVT 0)
|
||||
(E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)) $ TUsed $
|
||||
Eq0 (Pi Any "x" (FT "A") $ TUsed $ E $ F "P" :@ BVT 0)
|
||||
(FT "p") (FT "q"))
|
||||
(E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)) $
|
||||
S ["eq"] $ Y $
|
||||
Eq0 (Pi Any (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0)
|
||||
(FT "p") (FT "q"))
|
||||
]
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue