quox/lib/Quox/Reduce.idr

257 lines
8.2 KiB
Idris
Raw Normal View History

module Quox.Reduce
2022-04-23 18:21:30 -04:00
import Quox.No
import Quox.Syntax
import Quox.Definition
2023-03-26 10:09:47 -04:00
import Data.SnocVect
import Data.Maybe
import Data.List
2022-04-23 18:21:30 -04:00
2022-05-02 16:38:37 -04:00
%default total
2022-04-23 18:21:30 -04:00
||| errors that might happen if you pass an ill typed expression into
||| whnf. don't do that please
public export
2023-03-13 14:39:29 -04:00
data WhnfError = MissingEnumArm TagVal (List TagVal)
public export
0 RedexTest : TermLike -> Type
RedexTest tm = forall q, g. {d, n : Nat} -> Definitions' q g -> tm q d n -> Bool
public export
2023-03-13 14:39:29 -04:00
interface Whnf (0 tm : TermLike) (0 isRedex : RedexTest tm) (0 err : Type) | tm
where
whnf : {d, n : Nat} -> (defs : Definitions' q g) ->
tm q d n -> Either err (Subset (tm q d n) (No . isRedex defs))
public export
0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> Whnf tm isRedex err =>
Definitions' q g -> Pred (tm q d n)
IsRedex defs = So . isRedex defs
NotRedex defs = No . isRedex defs
public export
0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} ->
Whnf tm isRedex err =>
(q : Type) -> (d, n : Nat) -> {g : _} ->
(defs : Definitions' q g) -> Type
NonRedex tm q d n defs = Subset (tm q d n) (NotRedex defs)
public export %inline
nred : {0 isRedex : RedexTest tm} -> (0 _ : Whnf tm isRedex err) =>
(t : tm q d n) -> (0 nr : NotRedex defs t) =>
NonRedex tm q d n defs
nred t = Element t nr
2022-04-23 18:21:30 -04:00
2023-01-20 20:34:28 -05:00
public export %inline
isLamHead : Elim {} -> Bool
isLamHead (Lam {} :# Pi {}) = True
isLamHead _ = False
2022-05-25 09:59:58 -04:00
public export %inline
isDLamHead : Elim {} -> Bool
isDLamHead (DLam {} :# Eq {}) = True
isDLamHead _ = False
2022-05-25 09:59:58 -04:00
2023-01-26 13:54:46 -05:00
public export %inline
isPairHead : Elim {} -> Bool
isPairHead (Pair {} :# Sig {}) = True
isPairHead _ = False
public export %inline
isTagHead : Elim {} -> Bool
isTagHead (Tag t :# Enum _) = True
isTagHead _ = False
2023-03-26 08:40:54 -04:00
public export %inline
isNatHead : Elim {} -> Bool
isNatHead (Zero :# Nat) = True
isNatHead (Succ n :# Nat) = True
isNatHead _ = False
2023-03-31 13:11:35 -04:00
public export %inline
isBoxHead : Elim {} -> Bool
isBoxHead (Box {} :# BOX {}) = True
isBoxHead _ = False
2022-05-25 09:59:58 -04:00
public export %inline
isE : Term {} -> Bool
isE (E _) = True
isE _ = False
2022-05-25 09:59:58 -04:00
public export %inline
isAnn : Elim {} -> Bool
isAnn (_ :# _) = True
isAnn _ = False
mutual
public export
isRedexE : RedexTest Elim
isRedexE defs (F x) {d, n} =
isJust $ lookupElim x defs {d, n}
isRedexE _ (B _) = False
isRedexE defs (f :@ _) =
isRedexE defs f || isLamHead f
isRedexE defs (CasePair {pair, _}) =
isRedexE defs pair || isPairHead pair
isRedexE defs (CaseEnum {tag, _}) =
isRedexE defs tag || isTagHead tag
2023-03-26 08:40:54 -04:00
isRedexE defs (CaseNat {nat, _}) =
isRedexE defs nat || isNatHead nat
2023-03-31 13:11:35 -04:00
isRedexE defs (CaseBox {box, _}) =
isRedexE defs box || isBoxHead box
isRedexE defs (f :% _) =
isRedexE defs f || isDLamHead f
isRedexE defs (t :# a) =
isE t || isRedexT defs t || isRedexT defs a
isRedexE _ (CloE {}) = True
isRedexE _ (DCloE {}) = True
public export
isRedexT : RedexTest Term
isRedexT _ (CloT {}) = True
isRedexT _ (DCloT {}) = True
isRedexT defs (E e) = isAnn e || isRedexE defs e
isRedexT _ _ = False
mutual
export covering
2023-03-13 14:39:29 -04:00
Whnf Elim Reduce.isRedexE WhnfError where
whnf defs (F x) with (lookupElim x defs) proof eq
_ | Just y = whnf defs y
_ | Nothing = pure $ Element (F x) $ rewrite eq in Ah
whnf _ (B i) = pure $ nred $ B i
2023-03-31 13:11:35 -04:00
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
whnf defs (f :@ s) = do
Element f fnf <- whnf defs f
case nchoose $ isLamHead f of
Left _ =>
2023-02-22 01:40:19 -05:00
let Lam body :# Pi {arg, res, _} = f
s = s :# arg
in
whnf defs $ sub1 body s :# sub1 res s
Right nlh => pure $ Element (f :@ s) $ fnf `orNo` nlh
2023-03-31 13:11:35 -04:00
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
whnf defs (CasePair pi pair ret body) = do
Element pair pairnf <- whnf defs pair
case nchoose $ isPairHead pair of
Left _ =>
let Pair {fst, snd} :# Sig {fst = tfst, snd = tsnd, _} = pair
fst = fst :# tfst
snd = snd :# sub1 tsnd fst
in
2023-03-26 10:09:47 -04:00
whnf defs $ subN body [< fst, snd] :# sub1 ret pair
Right np =>
pure $ Element (CasePair pi pair ret body)
(pairnf `orNo` np)
2023-03-31 13:11:35 -04:00
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
-- u ∷ C['a∷{a,…}/p]
whnf defs (CaseEnum pi tag ret arms) = do
Element tag tagnf <- whnf defs tag
case nchoose $ isTagHead tag of
Left t =>
let Tag t :# Enum ts = tag
ty = sub1 ret tag
in
case lookup t arms of
Just arm => whnf defs $ arm :# ty
Nothing => Left $ MissingEnumArm t (keys arms)
Right nt =>
pure $ Element (CaseEnum pi tag ret arms) $ tagnf `orNo` nt
2023-03-31 13:11:35 -04:00
-- case zero ∷ return p ⇒ C of { zero ⇒ u; … } ⇝
-- u ∷ C[zero∷/p]
--
-- case succ n ∷ return p ⇒ C of { succ n' [π.ih] ⇒ u; … } ⇝
-- u[n∷/n', (case n ∷ ⋯)/ih] ∷ C[succ n ∷ /p]
2023-03-26 08:40:54 -04:00
whnf defs (CaseNat pi piIH nat ret zer suc) = do
Element nat natnf <- whnf defs nat
case nchoose $ isNatHead nat of
Left _ =>
let ty = sub1 ret nat in
case nat of
Zero :# Nat => whnf defs (zer :# ty)
Succ n :# Nat =>
let nn = n :# Nat
2023-03-26 10:09:47 -04:00
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc]
2023-03-26 08:40:54 -04:00
in
whnf defs $ tm :# ty
Right nn =>
pure $ Element (CaseNat pi piIH nat ret zer suc) $ natnf `orNo` nn
2023-03-31 13:11:35 -04:00
-- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝
-- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p]
whnf defs (CaseBox pi box ret body) = do
Element box boxnf <- whnf defs box
case nchoose $ isBoxHead box of
Left _ =>
let Box val :# BOX q bty = box
ty = sub1 ret box
in
whnf defs $ sub1 body (val :# bty) :# ty
Right nb =>
pure $ Element (CaseBox pi box ret body) $ boxnf `orNo` nb
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @0 ⇝ t ∷ A0/𝑗
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @1 ⇝ u ∷ A1/𝑗
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @𝑘 ⇝ s𝑘/𝑖 ∷ A𝑘/𝑗
-- (if 𝑘 is a variable)
whnf defs (f :% p) = do
Element f fnf <- whnf defs f
case nchoose $ isDLamHead f of
Left _ =>
2023-02-22 01:40:19 -05:00
let DLam body :# Eq {ty = ty, l, r, _} = f
body = endsOr l r (dsub1 body p) p
in
whnf defs $ body :# dsub1 ty p
Right ndlh =>
pure $ Element (f :% p) $ fnf `orNo` ndlh
2023-03-31 13:11:35 -04:00
-- e ∷ A ⇝ e
whnf defs (s :# a) = do
Element s snf <- whnf defs s
case nchoose $ isE s of
Left _ => let E e = s in pure $ Element e $ noOr2 snf
Right ne => do
Element a anf <- whnf defs a
pure $ Element (s :# a) $ ne `orNo` snf `orNo` anf
whnf defs (CloE el th) = whnf defs $ pushSubstsWith' id th el
whnf defs (DCloE el th) = whnf defs $ pushSubstsWith' th id el
export covering
2023-03-13 14:39:29 -04:00
Whnf Term Reduce.isRedexT WhnfError where
whnf _ t@(TYPE {}) = pure $ nred t
whnf _ t@(Pi {}) = pure $ nred t
whnf _ t@(Lam {}) = pure $ nred t
whnf _ t@(Sig {}) = pure $ nred t
whnf _ t@(Pair {}) = pure $ nred t
whnf _ t@(Enum {}) = pure $ nred t
whnf _ t@(Tag {}) = pure $ nred t
whnf _ t@(Eq {}) = pure $ nred t
whnf _ t@(DLam {}) = pure $ nred t
2023-03-26 08:40:54 -04:00
whnf _ Nat = pure $ nred Nat
whnf _ Zero = pure $ nred Zero
whnf _ t@(Succ {}) = pure $ nred t
2023-03-31 13:11:35 -04:00
whnf _ t@(BOX {}) = pure $ nred t
whnf _ t@(Box {}) = pure $ nred t
2023-03-31 13:11:35 -04:00
-- s ∷ A ⇝ s (in term context)
whnf defs (E e) = do
Element e enf <- whnf defs e
case nchoose $ isAnn e of
Left _ => let tm :# _ = e in pure $ Element tm $ noOr1 $ noOr2 enf
Right na => pure $ Element (E e) $ na `orNo` enf
whnf defs (CloT tm th) = whnf defs $ pushSubstsWith' id th tm
whnf defs (DCloT tm th) = whnf defs $ pushSubstsWith' th id tm