quox/lib/Quox/Syntax/DimEq.idr

289 lines
8.1 KiB
Idris
Raw Permalink Normal View History

2021-12-23 13:05:00 -05:00
module Quox.Syntax.DimEq
import public Quox.Syntax.Var
import public Quox.Syntax.Dim
import public Quox.Syntax.Subst
import public Quox.Context
2023-03-25 15:54:31 -04:00
import Quox.Pretty
import Quox.Name
2023-07-12 16:56:35 -04:00
import Quox.Thin
import Quox.FinExtra
2021-12-23 13:05:00 -05:00
import Data.Maybe
import Data.Nat
import Data.DPair
2022-02-26 19:45:10 -05:00
import Data.Fun.Graph
2023-07-12 16:56:35 -04:00
import Data.SnocVect
2022-02-26 19:45:10 -05:00
import Decidable.Decidable
import Decidable.Equality
2023-03-25 15:49:14 -04:00
import Derive.Prelude
2021-12-23 13:05:00 -05:00
2023-03-25 15:49:14 -04:00
%language ElabReflection
2021-12-23 13:05:00 -05:00
%default total
public export
DimEq' : Nat -> Type
2023-07-12 16:56:35 -04:00
DimEq' = Context (Maybe . DimT)
2021-12-23 13:05:00 -05:00
public export
data DimEq : Nat -> Type where
ZeroIsOne : DimEq d
C : (eqs : DimEq' d) -> DimEq d
%name DimEq eqs
2023-07-12 16:56:35 -04:00
%runElab deriveIndexed "DimEq" [Eq]
export
Show (DimEq d) where
showPrec d ZeroIsOne = "ZeroIsOne"
showPrec d (C eq') = showCon d "C" $ showArg eq' @{ShowTelRelevant}
2021-12-23 13:05:00 -05:00
2023-02-19 11:51:44 -05:00
public export
2023-02-20 15:38:47 -05:00
consistent : DimEq d -> Bool
consistent ZeroIsOne = False
consistent (C eqs) = True
public export
data IfConsistent : DimEq d -> Type -> Type where
2023-02-19 11:51:44 -05:00
Nothing : IfConsistent ZeroIsOne a
Just : a -> IfConsistent (C eqs) a
2023-02-20 15:38:47 -05:00
export
Functor (IfConsistent eqs) where
map f Nothing = Nothing
map f (Just x) = Just (f x)
export
Foldable (IfConsistent eqs) where
foldr f z Nothing = z
foldr f z (Just x) = f x z
export
Traversable (IfConsistent eqs) where
traverse f Nothing = pure Nothing
traverse f (Just x) = Just <$> f x
public export
ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a)
ifConsistent ZeroIsOne act = pure Nothing
ifConsistent (C _) act = Just <$> act
2023-04-15 09:13:01 -04:00
public export
toMaybe : IfConsistent eqs a -> Maybe a
toMaybe Nothing = Nothing
toMaybe (Just x) = Just x
2023-02-19 11:51:44 -05:00
export
fromGround' : Context' DimConst d -> DimEq' d
fromGround' [<] = [<]
2023-07-12 16:56:35 -04:00
fromGround' (ctx :< e) = fromGround' ctx :< Just (KT e noLoc)
export
fromGround : Context' DimConst d -> DimEq d
fromGround = C . fromGround'
public export %inline
2022-02-26 19:31:52 -05:00
zeroEq : DimEq 0
zeroEq = C [<]
public export %inline
2022-04-23 18:21:30 -04:00
new' : {d : Nat} -> DimEq' d
new' {d = 0} = [<]
new' {d = S d} = new' :< Nothing
2021-12-23 13:05:00 -05:00
public export %inline
2022-04-23 18:21:30 -04:00
new : {d : Nat} -> DimEq d
new = C new'
2021-12-23 13:05:00 -05:00
public export %inline
2023-07-12 16:56:35 -04:00
get' : DimEq' d -> Fin d -> Maybe (DimT d)
get' = getWith $ \p, by => map (// by) p
2022-02-26 19:33:52 -05:00
public export %inline
2023-07-12 16:56:35 -04:00
getShift' : Shift len out -> DimEq' len -> Fin len -> Maybe (DimT out)
getShift' = getShiftWith $ \p, by => map (// by) p
2022-02-26 19:33:52 -05:00
public export %inline
2023-07-12 16:56:35 -04:00
get : {d : Nat} -> DimEq' d -> DimT d -> DimT d
get eqs p@(Th _ (K {})) = p
get eqs p@(Th i (B _)) = fromMaybe p $ get' eqs i.fin
2021-12-23 13:05:00 -05:00
2022-02-26 19:30:23 -05:00
public export %inline
2023-07-12 16:56:35 -04:00
equal : {d : Nat} -> DimEq d -> (p, q : DimT d) -> Bool
2021-12-23 13:05:00 -05:00
equal ZeroIsOne p q = True
equal (C eqs) p q = get eqs p == get eqs q
2023-03-02 13:56:16 -05:00
infixl 7 :<?
2022-02-26 19:30:23 -05:00
export %inline
2023-07-12 16:56:35 -04:00
(:<?) : {d : Nat} -> DimEq d -> Maybe (DimT d) -> DimEq (S d)
2021-12-23 13:05:00 -05:00
ZeroIsOne :<? d = ZeroIsOne
2023-02-14 15:28:50 -05:00
C eqs :<? d = C $ eqs :< map (get eqs) d
2021-12-23 13:05:00 -05:00
2022-02-26 19:28:19 -05:00
private %inline
2023-07-12 16:56:35 -04:00
isVar : {d : Nat} -> Fin d -> DimT d -> Bool
isVar i (Th j (B _)) = i == j.fin
isVar i (Th _ (K {})) = False
private %inline
ifVar : {d : Nat} -> Fin d -> DimT d -> Maybe (DimT d) -> Maybe (DimT d)
ifVar i p = map $ \q => if isVar i q then p else q
2022-02-26 19:28:19 -05:00
2023-02-14 15:16:20 -05:00
-- (using decEq instead of (==) because of the proofs below)
2022-02-26 19:28:19 -05:00
private %inline
2021-12-23 13:05:00 -05:00
checkConst : (e, f : DimConst) -> (eqs : Lazy (DimEq' d)) -> DimEq d
2023-02-14 15:16:20 -05:00
checkConst e f eqs = if isYes $ e `decEq` f then C eqs else ZeroIsOne
2021-12-23 13:05:00 -05:00
export
2023-07-12 16:56:35 -04:00
setConst : {d : Nat} -> Fin d -> DimConst -> Loc -> DimEq' d -> DimEq d
setConst FZ e loc (eqs :< Nothing) =
C $ eqs :< Just (KT e loc)
setConst FZ e _ (eqs :< Just (Th _ (K f loc))) =
checkConst e f $ eqs :< Just (KT f loc)
setConst FZ e loc (eqs :< Just (Th j (B _))) =
setConst j.fin e loc eqs :<? Just (KT e loc)
setConst (FS i) e loc (eqs :< p) =
setConst i e loc eqs :<? ifVar i (KT e loc) p
2021-12-23 13:05:00 -05:00
mutual
private
2023-07-12 16:56:35 -04:00
setVar' : {d : Nat} ->
(i, j : Fin d) -> (0 _ : i `LT` j) -> Loc -> DimEq' d -> DimEq d
setVar' FZ (FS i) LTZ loc (eqs :< Nothing) =
C eqs :<? Just (BV i loc)
setVar' FZ (FS i) LTZ loc (eqs :< Just (Th _ (K e eloc))) =
setConst i e loc eqs :<? Just (KT e eloc)
setVar' FZ (FS i) LTZ loc (eqs :< Just (Th j (B jloc))) =
let j = j.fin in
setVar i j loc jloc eqs :<? Just (if j > i then BV j jloc else BV i loc)
setVar' (FS i) (FS j) (LTS lt) loc (eqs :< p) =
setVar' i j lt loc eqs :<? ifVar i (BV j loc) p
2021-12-23 13:05:00 -05:00
2022-02-26 19:30:23 -05:00
export %inline
2023-07-12 16:56:35 -04:00
setVar : {d : Nat} -> (i, j : Fin d) -> Loc -> Loc -> DimEq' d -> DimEq d
setVar i j li lj eqs with (compareP i j)
setVar i j li lj eqs | IsLT lt = setVar' i j lt lj eqs
setVar i i li lj eqs | IsEQ = C eqs
setVar i j li lj eqs | IsGT gt = setVar' j i gt li eqs
2021-12-23 13:05:00 -05:00
2022-02-26 19:30:23 -05:00
export %inline
2023-07-12 16:56:35 -04:00
set : {d : Nat} -> (p, q : DimT d) -> DimEq d -> DimEq d
2021-12-23 13:05:00 -05:00
set _ _ ZeroIsOne = ZeroIsOne
2023-07-12 16:56:35 -04:00
set (Th _ (K e _)) (Th _ (K f _)) (C eqs) = checkConst e f eqs
set (Th _ (K e el)) (Th j (B _)) (C eqs) = setConst j.fin e el eqs
set (Th i (B _)) (Th _ (K e el)) (C eqs) = setConst i.fin e el eqs
set (Th i (B il)) (Th j (B jl)) (C eqs) = setVar i.fin j.fin il jl eqs
2021-12-23 13:05:00 -05:00
2022-02-26 19:30:23 -05:00
public export %inline
2021-12-23 13:05:00 -05:00
Split : Nat -> Type
Split d = (DimEq' d, DSubst (S d) d)
2022-02-26 19:30:23 -05:00
export %inline
2023-07-12 16:56:35 -04:00
split1 : {d : Nat} -> DimConst -> Loc -> DimEq' (S d) -> Maybe (Split d)
split1 e loc eqs = case setConst 0 e loc eqs of
2021-12-23 13:05:00 -05:00
ZeroIsOne => Nothing
2023-07-12 16:56:35 -04:00
C (eqs :< _) => Just (eqs, id (B loc) :< KT e loc)
2021-12-23 13:05:00 -05:00
2022-02-26 19:30:23 -05:00
export %inline
2023-07-12 16:56:35 -04:00
split : {d : Nat} -> Loc -> DimEq' (S d) -> List (Split d)
2023-05-01 21:06:25 -04:00
split loc eqs = toList (split1 Zero loc eqs) <+> toList (split1 One loc eqs)
2021-12-23 13:05:00 -05:00
export
2023-07-12 16:56:35 -04:00
splits' : {d : Nat} -> Loc -> DimEq' d -> List (DSubst d 0)
splits' _ [<] = [[<]]
2023-05-01 21:06:25 -04:00
splits' loc eqs@(_ :< _) =
[th . ph | (eqs', th) <- split loc eqs, ph <- splits' loc eqs']
2021-12-23 13:05:00 -05:00
2023-05-01 21:06:25 -04:00
||| the Loc is put into each of the DimConsts
2022-02-26 19:30:23 -05:00
export %inline
2023-07-12 16:56:35 -04:00
splits : {d : Nat} -> Loc -> DimEq d -> List (DSubst d 0)
2023-05-01 21:06:25 -04:00
splits _ ZeroIsOne = []
splits loc (C eqs) = splits' loc eqs
2022-02-26 19:45:10 -05:00
2023-07-12 16:56:35 -04:00
-- private
-- 0 newGetShift : (d : Nat) -> (i : Fin d) -> (by : Shift d d') ->
-- getShift' by (new' {d}) i = Nothing
-- newGetShift (S d) FZ by = Refl
-- newGetShift (S d) (FS i) by = newGetShift d i (ssDown by)
2022-02-26 19:45:10 -05:00
2023-07-12 16:56:35 -04:00
-- export
-- 0 newGet' : (d : Nat) -> (i : Fin d) -> get' (new' {d}) i = Nothing
-- newGet' d i = newGetShift d i SZ
2022-02-26 19:45:10 -05:00
2023-07-12 16:56:35 -04:00
-- export
-- 0 newGet : (d : Nat) -> (p : Dim d) -> get (new' {d}) p = p
-- newGet d (K e _) = Refl
-- newGet d (B i _) = rewrite newGet' d i in Refl
2022-02-26 19:45:10 -05:00
2023-07-12 16:56:35 -04:00
-- export
-- 0 setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs
-- setSelf p ZeroIsOne = Refl
-- setSelf (K Zero _) (C eqs) = Refl
-- setSelf (K One _) (C eqs) = Refl
-- setSelf (B i _) (C eqs) with (compareP i i) | (compare i.nat i.nat)
-- _ | IsLT lt | LT = absurd lt
-- _ | IsEQ | EQ = Refl
-- _ | IsGT gt | GT = absurd gt
2023-03-25 15:54:31 -04:00
2023-07-12 16:56:35 -04:00
parameters {opts : LayoutOpts}
private
prettyDVars : {d : Nat} -> BContext d -> Eff Pretty (SnocList (Doc opts))
prettyDVars = traverse prettyDBind . toSnocList'
private
prettyCst : {d : Nat} -> BContext d -> DimT d -> DimT d -> Eff Pretty (Doc opts)
prettyCst dnames p q =
hsep <$> sequence [prettyDim dnames p, cstD, prettyDim dnames q]
private
prettyCsts : {d : Nat} -> BContext d -> DimEq' d ->
Eff Pretty (SnocList (Doc opts))
prettyCsts [<] [<] = pure [<]
prettyCsts dnames (eqs :< Nothing) = prettyCsts (tail dnames) eqs
prettyCsts dnames (eqs :< Just q) =
[|prettyCsts (tail dnames) eqs :<
prettyCst dnames (BV 0 noLoc) (weak 1 q)|]
export
prettyDimEq' : {d : Nat} -> BContext d -> DimEq' d -> Eff Pretty (Doc opts)
prettyDimEq' dnames eqs = do
vars <- prettyDVars dnames
eqs <- prettyCsts dnames eqs
let prec = if length vars <= 1 && null eqs then Arg else Outer
parensIfM prec $ fillSeparateTight !commaD $ toList vars ++ toList eqs
export
prettyDimEq : {d : Nat} -> BContext d -> DimEq d -> Eff Pretty (Doc opts)
prettyDimEq dnames ZeroIsOne = do
vars <- prettyDVars dnames
cst <- prettyCst [<] (KT Zero noLoc) (KT One noLoc)
pure $ separateTight !commaD $ vars :< cst
prettyDimEq dnames (C eqs) = prettyDimEq' dnames eqs
2023-03-25 15:54:31 -04:00
public export
2023-07-12 16:56:35 -04:00
wf' : {d : Nat} -> DimEq' d -> Bool
wf' [<] = True
wf' (eqs :< Nothing) = wf' eqs
wf' (eqs :< Just (Th _ (K {}))) = wf' eqs
wf' (eqs :< Just (Th i (B _))) = isNothing (get' eqs i.fin) && wf' eqs
public export
2023-07-12 16:56:35 -04:00
wf : {d : Nat} -> DimEq d -> Bool
wf ZeroIsOne = True
wf (C eqs) = wf' eqs