288 lines
8.1 KiB
Idris
288 lines
8.1 KiB
Idris
module Quox.Syntax.DimEq
|
|
|
|
import public Quox.Syntax.Var
|
|
import public Quox.Syntax.Dim
|
|
import public Quox.Syntax.Subst
|
|
import public Quox.Context
|
|
import Quox.Pretty
|
|
import Quox.Name
|
|
import Quox.Thin
|
|
import Quox.FinExtra
|
|
|
|
import Data.Maybe
|
|
import Data.Nat
|
|
import Data.DPair
|
|
import Data.Fun.Graph
|
|
import Data.SnocVect
|
|
import Decidable.Decidable
|
|
import Decidable.Equality
|
|
import Derive.Prelude
|
|
|
|
%language ElabReflection
|
|
%default total
|
|
|
|
|
|
public export
|
|
DimEq' : Nat -> Type
|
|
DimEq' = Context (Maybe . DimT)
|
|
|
|
|
|
public export
|
|
data DimEq : Nat -> Type where
|
|
ZeroIsOne : DimEq d
|
|
C : (eqs : DimEq' d) -> DimEq d
|
|
%name DimEq eqs
|
|
%runElab deriveIndexed "DimEq" [Eq]
|
|
|
|
export
|
|
Show (DimEq d) where
|
|
showPrec d ZeroIsOne = "ZeroIsOne"
|
|
showPrec d (C eq') = showCon d "C" $ showArg eq' @{ShowTelRelevant}
|
|
|
|
|
|
public export
|
|
consistent : DimEq d -> Bool
|
|
consistent ZeroIsOne = False
|
|
consistent (C eqs) = True
|
|
|
|
|
|
public export
|
|
data IfConsistent : DimEq d -> Type -> Type where
|
|
Nothing : IfConsistent ZeroIsOne a
|
|
Just : a -> IfConsistent (C eqs) a
|
|
|
|
export
|
|
Functor (IfConsistent eqs) where
|
|
map f Nothing = Nothing
|
|
map f (Just x) = Just (f x)
|
|
|
|
export
|
|
Foldable (IfConsistent eqs) where
|
|
foldr f z Nothing = z
|
|
foldr f z (Just x) = f x z
|
|
|
|
export
|
|
Traversable (IfConsistent eqs) where
|
|
traverse f Nothing = pure Nothing
|
|
traverse f (Just x) = Just <$> f x
|
|
|
|
public export
|
|
ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a)
|
|
ifConsistent ZeroIsOne act = pure Nothing
|
|
ifConsistent (C _) act = Just <$> act
|
|
|
|
public export
|
|
toMaybe : IfConsistent eqs a -> Maybe a
|
|
toMaybe Nothing = Nothing
|
|
toMaybe (Just x) = Just x
|
|
|
|
|
|
export
|
|
fromGround' : Context' DimConst d -> DimEq' d
|
|
fromGround' [<] = [<]
|
|
fromGround' (ctx :< e) = fromGround' ctx :< Just (KT e noLoc)
|
|
|
|
export
|
|
fromGround : Context' DimConst d -> DimEq d
|
|
fromGround = C . fromGround'
|
|
|
|
|
|
public export %inline
|
|
zeroEq : DimEq 0
|
|
zeroEq = C [<]
|
|
|
|
public export %inline
|
|
new' : {d : Nat} -> DimEq' d
|
|
new' {d = 0} = [<]
|
|
new' {d = S d} = new' :< Nothing
|
|
|
|
public export %inline
|
|
new : {d : Nat} -> DimEq d
|
|
new = C new'
|
|
|
|
|
|
public export %inline
|
|
get' : DimEq' d -> Fin d -> Maybe (DimT d)
|
|
get' = getWith $ \p, by => map (// by) p
|
|
|
|
public export %inline
|
|
getShift' : Shift len out -> DimEq' len -> Fin len -> Maybe (DimT out)
|
|
getShift' = getShiftWith $ \p, by => map (// by) p
|
|
|
|
public export %inline
|
|
get : {d : Nat} -> DimEq' d -> DimT d -> DimT d
|
|
get eqs p@(Th _ (K {})) = p
|
|
get eqs p@(Th i (B _)) = fromMaybe p $ get' eqs i.fin
|
|
|
|
|
|
public export %inline
|
|
equal : {d : Nat} -> DimEq d -> (p, q : DimT d) -> Bool
|
|
equal ZeroIsOne p q = True
|
|
equal (C eqs) p q = get eqs p == get eqs q
|
|
|
|
|
|
infixl 7 :<?
|
|
export %inline
|
|
(:<?) : {d : Nat} -> DimEq d -> Maybe (DimT d) -> DimEq (S d)
|
|
ZeroIsOne :<? d = ZeroIsOne
|
|
C eqs :<? d = C $ eqs :< map (get eqs) d
|
|
|
|
|
|
private %inline
|
|
isVar : {d : Nat} -> Fin d -> DimT d -> Bool
|
|
isVar i (Th j (B _)) = i == j.fin
|
|
isVar i (Th _ (K {})) = False
|
|
|
|
private %inline
|
|
ifVar : {d : Nat} -> Fin d -> DimT d -> Maybe (DimT d) -> Maybe (DimT d)
|
|
ifVar i p = map $ \q => if isVar i q then p else q
|
|
|
|
-- (using decEq instead of (==) because of the proofs below)
|
|
private %inline
|
|
checkConst : (e, f : DimConst) -> (eqs : Lazy (DimEq' d)) -> DimEq d
|
|
checkConst e f eqs = if isYes $ e `decEq` f then C eqs else ZeroIsOne
|
|
|
|
|
|
export
|
|
setConst : {d : Nat} -> Fin d -> DimConst -> Loc -> DimEq' d -> DimEq d
|
|
setConst FZ e loc (eqs :< Nothing) =
|
|
C $ eqs :< Just (KT e loc)
|
|
setConst FZ e _ (eqs :< Just (Th _ (K f loc))) =
|
|
checkConst e f $ eqs :< Just (KT f loc)
|
|
setConst FZ e loc (eqs :< Just (Th j (B _))) =
|
|
setConst j.fin e loc eqs :<? Just (KT e loc)
|
|
setConst (FS i) e loc (eqs :< p) =
|
|
setConst i e loc eqs :<? ifVar i (KT e loc) p
|
|
|
|
mutual
|
|
private
|
|
setVar' : {d : Nat} ->
|
|
(i, j : Fin d) -> (0 _ : i `LT` j) -> Loc -> DimEq' d -> DimEq d
|
|
setVar' FZ (FS i) LTZ loc (eqs :< Nothing) =
|
|
C eqs :<? Just (BV i loc)
|
|
setVar' FZ (FS i) LTZ loc (eqs :< Just (Th _ (K e eloc))) =
|
|
setConst i e loc eqs :<? Just (KT e eloc)
|
|
setVar' FZ (FS i) LTZ loc (eqs :< Just (Th j (B jloc))) =
|
|
let j = j.fin in
|
|
setVar i j loc jloc eqs :<? Just (if j > i then BV j jloc else BV i loc)
|
|
setVar' (FS i) (FS j) (LTS lt) loc (eqs :< p) =
|
|
setVar' i j lt loc eqs :<? ifVar i (BV j loc) p
|
|
|
|
export %inline
|
|
setVar : {d : Nat} -> (i, j : Fin d) -> Loc -> Loc -> DimEq' d -> DimEq d
|
|
setVar i j li lj eqs with (compareP i j)
|
|
setVar i j li lj eqs | IsLT lt = setVar' i j lt lj eqs
|
|
setVar i i li lj eqs | IsEQ = C eqs
|
|
setVar i j li lj eqs | IsGT gt = setVar' j i gt li eqs
|
|
|
|
|
|
export %inline
|
|
set : {d : Nat} -> (p, q : DimT d) -> DimEq d -> DimEq d
|
|
set _ _ ZeroIsOne = ZeroIsOne
|
|
set (Th _ (K e _)) (Th _ (K f _)) (C eqs) = checkConst e f eqs
|
|
set (Th _ (K e el)) (Th j (B _)) (C eqs) = setConst j.fin e el eqs
|
|
set (Th i (B _)) (Th _ (K e el)) (C eqs) = setConst i.fin e el eqs
|
|
set (Th i (B il)) (Th j (B jl)) (C eqs) = setVar i.fin j.fin il jl eqs
|
|
|
|
|
|
public export %inline
|
|
Split : Nat -> Type
|
|
Split d = (DimEq' d, DSubst (S d) d)
|
|
|
|
export %inline
|
|
split1 : {d : Nat} -> DimConst -> Loc -> DimEq' (S d) -> Maybe (Split d)
|
|
split1 e loc eqs = case setConst 0 e loc eqs of
|
|
ZeroIsOne => Nothing
|
|
C (eqs :< _) => Just (eqs, id (B loc) :< KT e loc)
|
|
|
|
export %inline
|
|
split : {d : Nat} -> Loc -> DimEq' (S d) -> List (Split d)
|
|
split loc eqs = toList (split1 Zero loc eqs) <+> toList (split1 One loc eqs)
|
|
|
|
export
|
|
splits' : {d : Nat} -> Loc -> DimEq' d -> List (DSubst d 0)
|
|
splits' _ [<] = [[<]]
|
|
splits' loc eqs@(_ :< _) =
|
|
[th . ph | (eqs', th) <- split loc eqs, ph <- splits' loc eqs']
|
|
|
|
||| the Loc is put into each of the DimConsts
|
|
export %inline
|
|
splits : {d : Nat} -> Loc -> DimEq d -> List (DSubst d 0)
|
|
splits _ ZeroIsOne = []
|
|
splits loc (C eqs) = splits' loc eqs
|
|
|
|
|
|
-- private
|
|
-- 0 newGetShift : (d : Nat) -> (i : Fin d) -> (by : Shift d d') ->
|
|
-- getShift' by (new' {d}) i = Nothing
|
|
-- newGetShift (S d) FZ by = Refl
|
|
-- newGetShift (S d) (FS i) by = newGetShift d i (ssDown by)
|
|
|
|
-- export
|
|
-- 0 newGet' : (d : Nat) -> (i : Fin d) -> get' (new' {d}) i = Nothing
|
|
-- newGet' d i = newGetShift d i SZ
|
|
|
|
-- export
|
|
-- 0 newGet : (d : Nat) -> (p : Dim d) -> get (new' {d}) p = p
|
|
-- newGet d (K e _) = Refl
|
|
-- newGet d (B i _) = rewrite newGet' d i in Refl
|
|
|
|
|
|
-- export
|
|
-- 0 setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs
|
|
-- setSelf p ZeroIsOne = Refl
|
|
-- setSelf (K Zero _) (C eqs) = Refl
|
|
-- setSelf (K One _) (C eqs) = Refl
|
|
-- setSelf (B i _) (C eqs) with (compareP i i) | (compare i.nat i.nat)
|
|
-- _ | IsLT lt | LT = absurd lt
|
|
-- _ | IsEQ | EQ = Refl
|
|
-- _ | IsGT gt | GT = absurd gt
|
|
|
|
|
|
parameters {opts : LayoutOpts}
|
|
private
|
|
prettyDVars : {d : Nat} -> BContext d -> Eff Pretty (SnocList (Doc opts))
|
|
prettyDVars = traverse prettyDBind . toSnocList'
|
|
|
|
private
|
|
prettyCst : {d : Nat} -> BContext d -> DimT d -> DimT d -> Eff Pretty (Doc opts)
|
|
prettyCst dnames p q =
|
|
hsep <$> sequence [prettyDim dnames p, cstD, prettyDim dnames q]
|
|
|
|
private
|
|
prettyCsts : {d : Nat} -> BContext d -> DimEq' d ->
|
|
Eff Pretty (SnocList (Doc opts))
|
|
prettyCsts [<] [<] = pure [<]
|
|
prettyCsts dnames (eqs :< Nothing) = prettyCsts (tail dnames) eqs
|
|
prettyCsts dnames (eqs :< Just q) =
|
|
[|prettyCsts (tail dnames) eqs :<
|
|
prettyCst dnames (BV 0 noLoc) (weak 1 q)|]
|
|
|
|
export
|
|
prettyDimEq' : {d : Nat} -> BContext d -> DimEq' d -> Eff Pretty (Doc opts)
|
|
prettyDimEq' dnames eqs = do
|
|
vars <- prettyDVars dnames
|
|
eqs <- prettyCsts dnames eqs
|
|
let prec = if length vars <= 1 && null eqs then Arg else Outer
|
|
parensIfM prec $ fillSeparateTight !commaD $ toList vars ++ toList eqs
|
|
|
|
export
|
|
prettyDimEq : {d : Nat} -> BContext d -> DimEq d -> Eff Pretty (Doc opts)
|
|
prettyDimEq dnames ZeroIsOne = do
|
|
vars <- prettyDVars dnames
|
|
cst <- prettyCst [<] (KT Zero noLoc) (KT One noLoc)
|
|
pure $ separateTight !commaD $ vars :< cst
|
|
prettyDimEq dnames (C eqs) = prettyDimEq' dnames eqs
|
|
|
|
|
|
public export
|
|
wf' : {d : Nat} -> DimEq' d -> Bool
|
|
wf' [<] = True
|
|
wf' (eqs :< Nothing) = wf' eqs
|
|
wf' (eqs :< Just (Th _ (K {}))) = wf' eqs
|
|
wf' (eqs :< Just (Th i (B _))) = isNothing (get' eqs i.fin) && wf' eqs
|
|
|
|
public export
|
|
wf : {d : Nat} -> DimEq d -> Bool
|
|
wf ZeroIsOne = True
|
|
wf (C eqs) = wf' eqs
|