256 lines
9.7 KiB
Idris
256 lines
9.7 KiB
Idris
module Tests.Typechecker
|
||
|
||
import Quox.Syntax
|
||
import Quox.Syntax.Qty.Three
|
||
import Quox.Typechecker as Lib
|
||
import public TypingImpls
|
||
import TAP
|
||
|
||
|
||
data Error'
|
||
= TCError (Typing.Error Three)
|
||
| WrongInfer (Term Three d n) (Term Three d n)
|
||
| WrongQOut (QOutput Three n) (QOutput Three n)
|
||
|
||
export
|
||
ToInfo Error' where
|
||
toInfo (TCError e) = toInfo e
|
||
toInfo (WrongInfer good bad) =
|
||
[("type", "WrongInfer"),
|
||
("wanted", prettyStr True good),
|
||
("got", prettyStr True bad)]
|
||
toInfo (WrongQOut good bad) =
|
||
[("type", "WrongQOut"),
|
||
("wanted", prettyStr True good),
|
||
("wanted", prettyStr True bad)]
|
||
|
||
0 M : Type -> Type
|
||
M = ReaderT (Definitions Three) $ Either Error'
|
||
|
||
inj : (forall m. CanTC Three m => m a) -> M a
|
||
inj act = do
|
||
env <- ask
|
||
let res = runReaderT env act {m = Either (Typing.Error Three)}
|
||
either (throwError . TCError) pure res
|
||
|
||
|
||
reflTy : IsQty q => Term q d n
|
||
reflTy =
|
||
Pi zero (TYPE 0) $ S ["A"] $ Y $
|
||
Pi one (BVT 0) $ S ["x"] $ Y $
|
||
Eq0 (BVT 1) (BVT 0) (BVT 0)
|
||
|
||
reflDef : IsQty q => Term q d n
|
||
reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0
|
||
|
||
defGlobals : Definitions Three
|
||
defGlobals = fromList
|
||
[("A", mkAbstract Zero $ TYPE 0),
|
||
("B", mkAbstract Zero $ TYPE 0),
|
||
("C", mkAbstract Zero $ TYPE 1),
|
||
("D", mkAbstract Zero $ TYPE 1),
|
||
("P", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)),
|
||
("a", mkAbstract Any $ FT "A"),
|
||
("a'", mkAbstract Any $ FT "A"),
|
||
("b", mkAbstract Any $ FT "B"),
|
||
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
|
||
("g", mkAbstract Any $ Arr One (FT "A") (FT "B")),
|
||
("f2", mkAbstract Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "A")),
|
||
("p", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0),
|
||
("q", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0),
|
||
("refl", mkDef Any reflTy reflDef)]
|
||
|
||
parameters (label : String) (act : Lazy (M ()))
|
||
{default defGlobals globals : Definitions Three}
|
||
testTC : Test
|
||
testTC = test label $ runReaderT globals act
|
||
|
||
testTCFail : Test
|
||
testTCFail = testThrows label (const True) $ runReaderT globals act
|
||
|
||
|
||
ctx : TContext Three 0 n -> TyContext Three 0 n
|
||
ctx = MkTyContext new
|
||
|
||
inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M ()
|
||
inferredTypeEq ctx exp got =
|
||
catchError
|
||
(inj $ equalType ctx exp got)
|
||
(\_ : Error' => throwError $ WrongInfer exp got)
|
||
|
||
qoutEq : (exp, got : QOutput Three n) -> M ()
|
||
qoutEq qout res = unless (qout == res) $ throwError $ WrongQOut qout res
|
||
|
||
inferAs : TyContext Three d n -> (sg : SQty Three) ->
|
||
Elim Three d n -> Term Three d n -> M ()
|
||
inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do
|
||
case !(inj $ infer ctx sg e) of
|
||
Just res => inferredTypeEq ctx ty res.type
|
||
Nothing => pure ()
|
||
|
||
inferAsQ : TyContext Three d n -> (sg : SQty Three) ->
|
||
Elim Three d n -> Term Three d n -> QOutput Three n -> M ()
|
||
inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do
|
||
case !(inj $ infer ctx sg e) of
|
||
Just res => do
|
||
inferredTypeEq ctx ty res.type
|
||
qoutEq qout res.qout
|
||
Nothing => pure ()
|
||
|
||
infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M ()
|
||
infer_ ctx sg e = ignore $ inj $ infer ctx sg e
|
||
|
||
checkQ : TyContext Three d n -> SQty Three ->
|
||
Term Three d n -> Term Three d n -> QOutput Three n -> M ()
|
||
checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do
|
||
case !(inj $ check ctx sg s ty) of
|
||
Just res => qoutEq qout res
|
||
Nothing => pure ()
|
||
|
||
check_ : TyContext Three d n -> SQty Three ->
|
||
Term Three d n -> Term Three d n -> M ()
|
||
check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty
|
||
|
||
export
|
||
tests : Test
|
||
tests = "typechecker" :- [
|
||
"universes" :- [
|
||
testTC "0 · ★₀ ⇐ ★₁" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 1),
|
||
testTC "0 · ★₀ ⇐ ★₂" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 2),
|
||
testTC "0 · ★₀ ⇐ ★_" $ check_ (ctx [<]) szero (TYPE 0) (TYPE UAny),
|
||
testTCFail "0 · ★₁ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 1) (TYPE 0),
|
||
testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0),
|
||
testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny),
|
||
testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1),
|
||
testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $
|
||
check_ (MkTyContext (ZeroIsOne {d = 0}) [<]) szero (TYPE 1) (TYPE 0)
|
||
],
|
||
|
||
"function types" :- [
|
||
note "A, B : ★₀; C, D : ★₁; P : A ⇾ ★₀",
|
||
testTC "0 · A ⊸ B ⇐ ★₀" $
|
||
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0),
|
||
note "subtyping",
|
||
testTC "0 · A ⊸ B ⇐ ★₁" $
|
||
check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1),
|
||
testTC "0 · C ⊸ D ⇐ ★₁" $
|
||
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1),
|
||
testTCFail "0 · C ⊸ D ⇍ ★₀" $
|
||
check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0),
|
||
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
|
||
check_ (ctx [<]) szero
|
||
(Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0)
|
||
(TYPE 0),
|
||
testTCFail "0 · A ⊸ P ⇍ ★₀" $
|
||
check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0),
|
||
testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $
|
||
check_ (MkTyContext (ZeroIsOne {d = 0}) [<]) szero
|
||
(Arr One (FT "A") $ FT "P") (TYPE 0)
|
||
],
|
||
|
||
"pair types" :- [
|
||
note #""A × B" for "(_ : A) × B""#,
|
||
testTC "0 · A × A ⇐ ★₀" $
|
||
check_ (ctx [<]) szero (FT "A" `And` FT "A") (TYPE 0),
|
||
testTCFail "1 · A × A ⇍ ★₀" $
|
||
check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0)
|
||
],
|
||
|
||
"free vars" :- [
|
||
note "A : ★₀",
|
||
testTC "0 · A ⇒ ★₀" $
|
||
inferAs (ctx [<]) szero (F "A") (TYPE 0),
|
||
testTC "0 · [A] ⇐ ★₀" $
|
||
check_ (ctx [<]) szero (FT "A") (TYPE 0),
|
||
note "subtyping",
|
||
testTC "0 · [A] ⇐ ★₁" $
|
||
check_ (ctx [<]) szero (FT "A") (TYPE 1),
|
||
note "(fail) runtime-relevant type",
|
||
testTCFail "1 · A ⇏ ★₀" $
|
||
infer_ (ctx [<]) sone (F "A"),
|
||
note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)",
|
||
testTC "1 · refl ⇒ ⋯" $ inferAs (ctx [<]) sone (F "refl") reflTy,
|
||
testTC "1 · [refl] ⇐ ⋯" $ check_ (ctx [<]) sone (FT "refl") reflTy
|
||
],
|
||
|
||
"bound vars" :- [
|
||
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
|
||
inferAsQ {n = 1} (ctx [< FT "A"]) sone
|
||
(BV 0) (FT "A") [< one],
|
||
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
|
||
checkQ {n = 1} (ctx [< FT "A"]) sone (BVT 0) (FT "A") [< one],
|
||
note "f2 : A ⊸ A ⊸ A",
|
||
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ A ⊳ ω·x" $
|
||
inferAsQ {n = 1} (ctx [< FT "A"]) sone
|
||
(F "f2" :@@ [BVT 0, BVT 0]) (FT "A") [< Any]
|
||
],
|
||
|
||
"lambda" :- [
|
||
note "linear & unrestricted identity",
|
||
testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $
|
||
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
|
||
testTC "1 · (λ x ⇒ x) ⇐ A → A" $
|
||
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
|
||
note "(fail) zero binding used relevantly",
|
||
testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $
|
||
check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
|
||
note "(but ok in overall erased context)",
|
||
testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $
|
||
check_ (ctx [<]) szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
|
||
testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $
|
||
check_ (ctx [<]) sone
|
||
(["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
|
||
reflTy,
|
||
testTC "1 · (λ A x ⇒ λᴰ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $
|
||
check_ (ctx [<]) sone reflDef reflTy
|
||
],
|
||
|
||
"equalities" :- [
|
||
testTC "1 · (λᴰ i ⇒ a) ⇐ a ≡ a" $
|
||
check_ (ctx [<]) sone (DLam $ S ["i"] $ N $ FT "a")
|
||
(Eq0 (FT "A") (FT "a") (FT "a")),
|
||
testTC "0 · (λ p q ⇒ λᴰ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
|
||
check_ (ctx [<]) szero
|
||
(Lam $ S ["p"] $ Y $ Lam $ S ["q"] $ N $ DLam $ S ["i"] $ N $ BVT 0)
|
||
(Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["p"] $ Y $
|
||
Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["q"] $ Y $
|
||
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
|
||
testTC "0 · (λ p q ⇒ λᴰ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
|
||
check_ (ctx [<]) szero
|
||
(Lam $ S ["p"] $ N $ Lam $ S ["q"] $ Y $
|
||
DLam $ S ["i"] $ N $ BVT 0)
|
||
(Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["p"] $ Y $
|
||
Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["q"] $ Y $
|
||
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0))
|
||
],
|
||
|
||
"misc" :- [
|
||
note "0·A : Type, 0·P : A → Type, ω·p : (1·x : A) → P x",
|
||
note "⊢",
|
||
note "1 · λ x y xy ⇒ λᴰ i ⇒ p (xy i)",
|
||
note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)",
|
||
testTC "cong" $
|
||
check_ (ctx [<]) sone
|
||
(["x", "y", "xy"] :\\ ["i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
|
||
(Pi Zero (FT "A") $ S ["x"] $ Y $
|
||
Pi Zero (FT "A") $ S ["y"] $ Y $
|
||
Pi One (Eq0 (FT "A") (BVT 1) (BVT 0)) $ S ["xy"] $ Y $
|
||
Eq (S ["i"] $ Y $ E $ F "P" :@ E (BV 0 :% BV 0))
|
||
(E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)),
|
||
note "0·A : Type, 0·P : ω·A → Type,",
|
||
note "ω·p q : (1·x : A) → P x",
|
||
note "⊢",
|
||
note "1 · λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i",
|
||
note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q",
|
||
testTC "funext" $
|
||
check_ (ctx [<]) sone
|
||
(["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
|
||
(Pi One
|
||
(Pi One (FT "A") $ S ["x"] $ Y $
|
||
Eq0 (E $ F "P" :@ BVT 0)
|
||
(E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)) $
|
||
S ["eq"] $ Y $
|
||
Eq0 (Pi Any (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0)
|
||
(FT "p") (FT "q"))
|
||
]
|
||
]
|