quox/tests/Tests/Equal.idr
2022-04-27 20:06:39 +02:00

101 lines
2.5 KiB
Idris

module Tests.Equal
import Quox.Equal
import Quox.Pretty
import TAP
export
ToInfo Equal.Error where
toInfo (ClashT mode s t) =
[("clash", "term"),
("mode", show mode),
("left", prettyStr True s),
("right", prettyStr True t)]
toInfo (ClashU mode k l) =
[("clash", "universe"),
("mode", show mode),
("left", prettyStr True k),
("right", prettyStr True l)]
toInfo (ClashQ pi rh) =
[("clash", "quantity"),
("left", prettyStr True pi),
("right", prettyStr True rh)]
M = Error [Equal.Error]
testEq : String -> Lazy (M ()) -> Test
testEq = test
testNeq : String -> Lazy (M ()) -> Test
testNeq = testThrows
subT : {default 0 d, n : Nat} -> Term d n -> Term d n -> M ()
subT = Quox.Equal.subT
%hide Quox.Equal.subT
equalT : {default 0 d, n : Nat} -> Term d n -> Term d n -> M ()
equalT = Quox.Equal.equalT
%hide Quox.Equal.equalT
subE : {default 0 d, n : Nat} -> Elim d n -> Elim d n -> M ()
subE = Quox.Equal.subE
%hide Quox.Equal.subE
equalE : {default 0 d, n : Nat} -> Elim d n -> Elim d n -> M ()
equalE = Quox.Equal.equalE
%hide Quox.Equal.equalE
export
tests : Test
tests = "equality & subtyping" :- [
"universes" :- [
testEq "Type 0 == Type 0" $
equalT (TYPE (U 0)) (TYPE (U 0)),
testNeq "Type 0 =/= Type 1" $
equalT (TYPE (U 0)) (TYPE (U 1)),
testNeq "Type 1 =/= Type 0" $
equalT (TYPE (U 1)) (TYPE (U 0)),
testEq "Type 0 <: Type 0" $
subT (TYPE (U 0)) (TYPE (U 0)),
testEq "Type 0 <: Type 1" $
subT (TYPE (U 0)) (TYPE (U 1)),
testNeq "Type 1 </: Type 0" $
subT (TYPE (U 1)) (TYPE (U 0))
],
todo "pi",
todo "lambda",
todo "term closure",
todo "term d-closure",
"free var" :- [
testEq "A == A" $
equalE (F "A") (F "A"),
testNeq "A =/= B" $
equalE (F "A") (F "B"),
testEq "A <: A" $
subE (F "A") (F "A"),
testNeq "A </: B" $
subE (F "A") (F "B")
],
todo "bound var",
"application" :-
let a = F "a"; a' = E a
A = FT "A"
λxx = Lam "x" (TUsed (BVT 0))
A_A = Arr one A A
λxx' = λxx :# A_A
in [
testEq "(λx. x : A -> A) a == ((a : A) : A) (β)" $
equalE (λxx' :@ a') (E (a' :# A) :# A),
testEq "(λx. x : _) a == a (βυ)" $
equalE (λxx' :@ a') a
],
todo "annotation",
todo "elim closure",
todo "elim d-closure",
todo "clashes"
]