255 lines
8.1 KiB
Idris
255 lines
8.1 KiB
Idris
module Quox.Reduce
|
||
|
||
import Quox.No
|
||
import Quox.Syntax
|
||
import Quox.Definition
|
||
import Data.SnocVect
|
||
import Data.Maybe
|
||
import Data.List
|
||
|
||
%default total
|
||
|
||
|
||
||| errors that might happen if you pass an ill typed expression into
|
||
||| whnf. don't do that please
|
||
public export
|
||
data WhnfError = MissingEnumArm TagVal (List TagVal)
|
||
|
||
|
||
public export
|
||
0 RedexTest : TermLike -> Type
|
||
RedexTest tm = {d, n : Nat} -> Definitions -> tm d n -> Bool
|
||
|
||
public export
|
||
interface Whnf (0 tm : TermLike) (0 isRedex : RedexTest tm) (0 err : Type) | tm
|
||
where
|
||
whnf : {d, n : Nat} -> (defs : Definitions) ->
|
||
tm d n -> Either err (Subset (tm d n) (No . isRedex defs))
|
||
|
||
public export
|
||
0 IsRedex, NotRedex : {isRedex : RedexTest tm} -> Whnf tm isRedex err =>
|
||
Definitions -> Pred (tm d n)
|
||
IsRedex defs = So . isRedex defs
|
||
NotRedex defs = No . isRedex defs
|
||
|
||
public export
|
||
0 NonRedex : (tm : TermLike) -> {isRedex : RedexTest tm} ->
|
||
Whnf tm isRedex err =>
|
||
(d, n : Nat) -> (defs : Definitions) -> Type
|
||
NonRedex tm d n defs = Subset (tm d n) (NotRedex defs)
|
||
|
||
public export %inline
|
||
nred : {0 isRedex : RedexTest tm} -> (0 _ : Whnf tm isRedex err) =>
|
||
(t : tm d n) -> (0 nr : NotRedex defs t) =>
|
||
NonRedex tm d n defs
|
||
nred t = Element t nr
|
||
|
||
|
||
public export %inline
|
||
isLamHead : Elim {} -> Bool
|
||
isLamHead (Lam {} :# Pi {}) = True
|
||
isLamHead _ = False
|
||
|
||
public export %inline
|
||
isDLamHead : Elim {} -> Bool
|
||
isDLamHead (DLam {} :# Eq {}) = True
|
||
isDLamHead _ = False
|
||
|
||
public export %inline
|
||
isPairHead : Elim {} -> Bool
|
||
isPairHead (Pair {} :# Sig {}) = True
|
||
isPairHead _ = False
|
||
|
||
public export %inline
|
||
isTagHead : Elim {} -> Bool
|
||
isTagHead (Tag t :# Enum _) = True
|
||
isTagHead _ = False
|
||
|
||
public export %inline
|
||
isNatHead : Elim {} -> Bool
|
||
isNatHead (Zero :# Nat) = True
|
||
isNatHead (Succ n :# Nat) = True
|
||
isNatHead _ = False
|
||
|
||
public export %inline
|
||
isBoxHead : Elim {} -> Bool
|
||
isBoxHead (Box {} :# BOX {}) = True
|
||
isBoxHead _ = False
|
||
|
||
public export %inline
|
||
isE : Term {} -> Bool
|
||
isE (E _) = True
|
||
isE _ = False
|
||
|
||
public export %inline
|
||
isAnn : Elim {} -> Bool
|
||
isAnn (_ :# _) = True
|
||
isAnn _ = False
|
||
|
||
|
||
mutual
|
||
public export
|
||
isRedexE : RedexTest Elim
|
||
isRedexE defs (F x) {d, n} =
|
||
isJust $ lookupElim x defs {d, n}
|
||
isRedexE _ (B _) = False
|
||
isRedexE defs (f :@ _) =
|
||
isRedexE defs f || isLamHead f
|
||
isRedexE defs (CasePair {pair, _}) =
|
||
isRedexE defs pair || isPairHead pair
|
||
isRedexE defs (CaseEnum {tag, _}) =
|
||
isRedexE defs tag || isTagHead tag
|
||
isRedexE defs (CaseNat {nat, _}) =
|
||
isRedexE defs nat || isNatHead nat
|
||
isRedexE defs (CaseBox {box, _}) =
|
||
isRedexE defs box || isBoxHead box
|
||
isRedexE defs (f :% _) =
|
||
isRedexE defs f || isDLamHead f
|
||
isRedexE defs (t :# a) =
|
||
isE t || isRedexT defs t || isRedexT defs a
|
||
isRedexE _ (CloE {}) = True
|
||
isRedexE _ (DCloE {}) = True
|
||
|
||
public export
|
||
isRedexT : RedexTest Term
|
||
isRedexT _ (CloT {}) = True
|
||
isRedexT _ (DCloT {}) = True
|
||
isRedexT defs (E e) = isAnn e || isRedexE defs e
|
||
isRedexT _ _ = False
|
||
|
||
mutual
|
||
export covering
|
||
Whnf Elim Reduce.isRedexE WhnfError where
|
||
whnf defs (F x) with (lookupElim x defs) proof eq
|
||
_ | Just y = whnf defs y
|
||
_ | Nothing = pure $ Element (F x) $ rewrite eq in Ah
|
||
|
||
whnf _ (B i) = pure $ nred $ B i
|
||
|
||
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
|
||
whnf defs (f :@ s) = do
|
||
Element f fnf <- whnf defs f
|
||
case nchoose $ isLamHead f of
|
||
Left _ =>
|
||
let Lam body :# Pi {arg, res, _} = f
|
||
s = s :# arg
|
||
in
|
||
whnf defs $ sub1 body s :# sub1 res s
|
||
Right nlh => pure $ Element (f :@ s) $ fnf `orNo` nlh
|
||
|
||
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
|
||
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
|
||
whnf defs (CasePair pi pair ret body) = do
|
||
Element pair pairnf <- whnf defs pair
|
||
case nchoose $ isPairHead pair of
|
||
Left _ =>
|
||
let Pair {fst, snd} :# Sig {fst = tfst, snd = tsnd, _} = pair
|
||
fst = fst :# tfst
|
||
snd = snd :# sub1 tsnd fst
|
||
in
|
||
whnf defs $ subN body [< fst, snd] :# sub1 ret pair
|
||
Right np =>
|
||
pure $ Element (CasePair pi pair ret body)
|
||
(pairnf `orNo` np)
|
||
|
||
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
|
||
-- u ∷ C['a∷{a,…}/p]
|
||
whnf defs (CaseEnum pi tag ret arms) = do
|
||
Element tag tagnf <- whnf defs tag
|
||
case nchoose $ isTagHead tag of
|
||
Left t =>
|
||
let Tag t :# Enum ts = tag
|
||
ty = sub1 ret tag
|
||
in
|
||
case lookup t arms of
|
||
Just arm => whnf defs $ arm :# ty
|
||
Nothing => Left $ MissingEnumArm t (keys arms)
|
||
Right nt =>
|
||
pure $ Element (CaseEnum pi tag ret arms) $ tagnf `orNo` nt
|
||
|
||
-- case zero ∷ ℕ return p ⇒ C of { zero ⇒ u; … } ⇝
|
||
-- u ∷ C[zero∷ℕ/p]
|
||
--
|
||
-- case succ n ∷ ℕ return p ⇒ C of { succ n' [π.ih] ⇒ u; … } ⇝
|
||
-- u[n∷ℕ/n', (case n ∷ ℕ ⋯)/ih] ∷ C[succ n ∷ ℕ/p]
|
||
whnf defs (CaseNat pi piIH nat ret zer suc) = do
|
||
Element nat natnf <- whnf defs nat
|
||
case nchoose $ isNatHead nat of
|
||
Left _ =>
|
||
let ty = sub1 ret nat in
|
||
case nat of
|
||
Zero :# Nat => whnf defs (zer :# ty)
|
||
Succ n :# Nat =>
|
||
let nn = n :# Nat
|
||
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc]
|
||
in
|
||
whnf defs $ tm :# ty
|
||
Right nn =>
|
||
pure $ Element (CaseNat pi piIH nat ret zer suc) $ natnf `orNo` nn
|
||
|
||
-- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝
|
||
-- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p]
|
||
whnf defs (CaseBox pi box ret body) = do
|
||
Element box boxnf <- whnf defs box
|
||
case nchoose $ isBoxHead box of
|
||
Left _ =>
|
||
let Box val :# BOX q bty = box
|
||
ty = sub1 ret box
|
||
in
|
||
whnf defs $ sub1 body (val :# bty) :# ty
|
||
Right nb =>
|
||
pure $ Element (CaseBox pi box ret body) $ boxnf `orNo` nb
|
||
|
||
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @0 ⇝ t ∷ A‹0/𝑗›
|
||
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @1 ⇝ u ∷ A‹1/𝑗›
|
||
-- ((δ 𝑖 ⇒ s) ∷ Eq [𝑗 ⇒ A] t u) @𝑘 ⇝ s‹𝑘/𝑖› ∷ A‹𝑘/𝑗›
|
||
-- (if 𝑘 is a variable)
|
||
whnf defs (f :% p) = do
|
||
Element f fnf <- whnf defs f
|
||
case nchoose $ isDLamHead f of
|
||
Left _ =>
|
||
let DLam body :# Eq {ty = ty, l, r, _} = f
|
||
body = endsOr l r (dsub1 body p) p
|
||
in
|
||
whnf defs $ body :# dsub1 ty p
|
||
Right ndlh =>
|
||
pure $ Element (f :% p) $ fnf `orNo` ndlh
|
||
|
||
-- e ∷ A ⇝ e
|
||
whnf defs (s :# a) = do
|
||
Element s snf <- whnf defs s
|
||
case nchoose $ isE s of
|
||
Left _ => let E e = s in pure $ Element e $ noOr2 snf
|
||
Right ne => do
|
||
Element a anf <- whnf defs a
|
||
pure $ Element (s :# a) $ ne `orNo` snf `orNo` anf
|
||
|
||
whnf defs (CloE el th) = whnf defs $ pushSubstsWith' id th el
|
||
whnf defs (DCloE el th) = whnf defs $ pushSubstsWith' th id el
|
||
|
||
export covering
|
||
Whnf Term Reduce.isRedexT WhnfError where
|
||
whnf _ t@(TYPE {}) = pure $ nred t
|
||
whnf _ t@(Pi {}) = pure $ nred t
|
||
whnf _ t@(Lam {}) = pure $ nred t
|
||
whnf _ t@(Sig {}) = pure $ nred t
|
||
whnf _ t@(Pair {}) = pure $ nred t
|
||
whnf _ t@(Enum {}) = pure $ nred t
|
||
whnf _ t@(Tag {}) = pure $ nred t
|
||
whnf _ t@(Eq {}) = pure $ nred t
|
||
whnf _ t@(DLam {}) = pure $ nred t
|
||
whnf _ Nat = pure $ nred Nat
|
||
whnf _ Zero = pure $ nred Zero
|
||
whnf _ t@(Succ {}) = pure $ nred t
|
||
whnf _ t@(BOX {}) = pure $ nred t
|
||
whnf _ t@(Box {}) = pure $ nred t
|
||
|
||
-- s ∷ A ⇝ s (in term context)
|
||
whnf defs (E e) = do
|
||
Element e enf <- whnf defs e
|
||
case nchoose $ isAnn e of
|
||
Left _ => let tm :# _ = e in pure $ Element tm $ noOr1 $ noOr2 enf
|
||
Right na => pure $ Element (E e) $ na `orNo` enf
|
||
|
||
whnf defs (CloT tm th) = whnf defs $ pushSubstsWith' id th tm
|
||
whnf defs (DCloT tm th) = whnf defs $ pushSubstsWith' th id tm
|