quox/tests/Tests/Equal.idr

401 lines
15 KiB
Idris
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Tests.Equal
import Quox.Equal
import Quox.Syntax.Qty.Three
import public TypingImpls
import TAP
0 M : Type -> Type
M = ReaderT (Definitions Three) (Either (Error Three))
defGlobals : Definitions Three
defGlobals = fromList
[("A", mkAbstract Zero $ TYPE 0),
("B", mkAbstract Zero $ TYPE 0),
("a", mkAbstract Any $ FT "A"),
("a'", mkAbstract Any $ FT "A"),
("b", mkAbstract Any $ FT "B"),
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
("id", mkDef Any (Arr One (FT "A") (FT "A")) (["x"] :\\ BVT 0)),
("eq-ab", mkAbstract Zero $ Eq0 (TYPE 0) (FT "A") (FT "B"))]
parameters (label : String) (act : Lazy (M ()))
{default defGlobals globals : Definitions Three}
testEq : Test
testEq = test label $ runReaderT globals act
testNeq : Test
testNeq = testThrows label (const True) $ runReaderT globals act
parameters (0 d : Nat) (ctx : TyContext Three d n)
subTD, equalTD : Term Three d n -> Term Three d n -> Term Three d n -> M ()
subTD ty s t = Term.sub ctx ty s t
equalTD ty s t = Term.equal ctx ty s t
subED, equalED : Elim Three d n -> Elim Three d n -> M ()
subED e f = Elim.sub ctx e f
equalED e f = Elim.equal ctx e f
parameters (ctx : TyContext Three 0 n)
subT, equalT : Term Three 0 n -> Term Three 0 n -> Term Three 0 n -> M ()
subT = subTD 0 ctx
equalT = equalTD 0 ctx
subE, equalE : Elim Three 0 n -> Elim Three 0 n -> M ()
subE = subED 0 ctx
equalE = equalED 0 ctx
export
tests : Test
tests = "equality & subtyping" :- [
note #""s{t,…}" for term substs; "sp,…›" for dim substs"#,
note #""0=1 ⊢ 𝒥" means that 𝒥 holds in an inconsistent dim context"#,
"universes" :- [
testEq "★₀ = ★₀" $
equalT empty (TYPE 1) (TYPE 0) (TYPE 0),
testNeq "★₀ ≠ ★₁" $
equalT empty (TYPE 2) (TYPE 0) (TYPE 1),
testNeq "★₁ ≠ ★₀" $
equalT empty (TYPE 2) (TYPE 1) (TYPE 0),
testEq "★₀ <: ★₀" $
subT empty (TYPE 1) (TYPE 0) (TYPE 0),
testEq "★₀ <: ★₁" $
subT empty (TYPE 2) (TYPE 0) (TYPE 1),
testNeq "★₁ ≮: ★₀" $
subT empty (TYPE 2) (TYPE 1) (TYPE 0)
],
"pi" :- [
note #""𝐴𝐵" for (1·𝐴)𝐵"#,
note #""𝐴𝐵" for (0·𝐴)𝐵"#,
testEq "★₀ ⇾ ★₀ = ★₀ ⇾ ★₀" $
let tm = Arr Zero (TYPE 0) (TYPE 0) in
equalT empty (TYPE 1) tm tm,
testEq "★₀ ⇾ ★₀ <: ★₀ ⇾ ★₀" $
let tm = Arr Zero (TYPE 0) (TYPE 0) in
subT empty (TYPE 1) tm tm,
testNeq "★₁ ⊸ ★₀ ≠ ★₀ ⇾ ★₀" $
let tm1 = Arr Zero (TYPE 1) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 0) in
equalT empty (TYPE 2) tm1 tm2,
testEq "★₁ ⊸ ★₀ <: ★₀ ⊸ ★₀" $
let tm1 = Arr One (TYPE 1) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 0) in
subT empty (TYPE 2) tm1 tm2,
testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $
let tm1 = Arr One (TYPE 0) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 1) in
subT empty (TYPE 2) tm1 tm2,
testEq "★₀ ⊸ ★₀ <: ★₀ ⊸ ★₁" $
let tm1 = Arr One (TYPE 0) (TYPE 0)
tm2 = Arr One (TYPE 0) (TYPE 1) in
subT empty (TYPE 2) tm1 tm2,
testEq "A ⊸ B = A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
equalT empty (TYPE 0) tm tm,
testEq "A ⊸ B <: A ⊸ B" $
let tm = Arr One (FT "A") (FT "B") in
subT empty (TYPE 0) tm tm,
note "incompatible quantities",
testNeq "★₀ ⊸ ★₀ ≠ ★₀ ⇾ ★₁" $
let tm1 = Arr Zero (TYPE 0) (TYPE 0)
tm2 = Arr Zero (TYPE 0) (TYPE 1) in
equalT empty (TYPE 2) tm1 tm2,
testNeq "A ⇾ B ≠ A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT empty (TYPE 0) tm1 tm2,
testNeq "A ⇾ B ≮: A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
subT empty (TYPE 0) tm1 tm2,
testEq "0=1 ⊢ A ⇾ B = A ⊸ B" $
let tm1 = Arr Zero (FT "A") (FT "B")
tm2 = Arr One (FT "A") (FT "B") in
equalT (MkTyContext ZeroIsOne [<]) (TYPE 0) tm1 tm2,
note "[todo] should π ≤ ρ ⊢ (ρ·A) → B <: (π·A) → B?"
],
"lambda" :- [
testEq "λ x ⇒ [x] = λ x ⇒ [x]" $
equalT empty (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["x"] :\\ BVT 0),
testEq "λ x ⇒ [x] <: λ x ⇒ [x]" $
subT empty (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["x"] :\\ BVT 0),
testEq "λ x ⇒ [x] = λ y ⇒ [y]" $
equalT empty (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["y"] :\\ BVT 0),
testEq "λ x ⇒ [x] <: λ y ⇒ [y]" $
equalT empty (Arr One (FT "A") (FT "A"))
(["x"] :\\ BVT 0)
(["y"] :\\ BVT 0),
testNeq "λ x y ⇒ [x] ≠ λ x y ⇒ [y]" $
equalT empty (Arr One (FT "A") $ Arr One (FT "A") (FT "A"))
(["x", "y"] :\\ BVT 1)
(["x", "y"] :\\ BVT 0),
testEq "λ x ⇒ [a] = λ x ⇒ [a] (Y vs N)" $
equalT empty (Arr Zero (FT "B") (FT "A"))
(Lam $ S ["x"] $ Y $ FT "a")
(Lam $ S ["x"] $ N $ FT "a"),
testEq "λ x ⇒ [f [x]] = [f] (η)" $
equalT empty (Arr One (FT "A") (FT "A"))
(["x"] :\\ E (F "f" :@ BVT 0))
(FT "f")
],
"eq type" :- [
testEq "(★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : ★₁)" $
let tm = Eq0 (TYPE 1) (TYPE 0) (TYPE 0) in
equalT empty (TYPE 2) tm tm,
testEq "A ≔ ★₁ ⊢ (★₀ ≡ ★₀ : ★₁) = (★₀ ≡ ★₀ : A)"
{globals = fromList [("A", mkDef zero (TYPE 2) (TYPE 1))]} $
equalT empty (TYPE 2)
(Eq0 (TYPE 1) (TYPE 0) (TYPE 0))
(Eq0 (FT "A") (TYPE 0) (TYPE 0))
],
"equalities and uip" :-
let refl : Term q d n -> Term q d n -> Elim q d n
refl a x = (DLam $ S ["_"] $ N x) :# (Eq0 a x x)
in
[
note #""refl [A] x" is an abbreviation for "(λᴰi ⇒ x)(x ≡ x : A)""#,
note "binds before ∥ are globals, after it are BVs",
testEq "refl [A] a = refl [A] a" $
equalE empty (refl (FT "A") (FT "a")) (refl (FT "A") (FT "a")),
testEq "p : (a ≡ a' : A), q : (a ≡ a' : A) ∥ ⊢ p = q (free)"
{globals =
let def = mkAbstract Zero $ Eq0 (FT "A") (FT "a") (FT "a'") in
defGlobals `mergeLeft` fromList [("p", def), ("q", def)]} $
equalE empty (F "p") (F "q"),
testEq "∥ x : (a ≡ a' : A), y : (a ≡ a' : A) ⊢ x = y (bound)" $
let ty : forall n. Term Three 0 n := Eq0 (FT "A") (FT "a") (FT "a'") in
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
let ty : forall n. Term Three 0 n
:= E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
equalE (MkTyContext new [< FT "EE", FT "EE"]) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("EE", mkDef zero (TYPE 0) (FT "E"))]} $
equalE (MkTyContext new [< FT "EE", FT "E"]) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : E, y : E ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
equalE (MkTyContext new [< FT "E", FT "E"]) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
let ty : forall n. Term Three 0 n
:= Sig (FT "E") $ S ["_"] $ N $ FT "E" in
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
testEq "E ≔ a ≡ a' : A, F ≔ E × E ∥ x : F, y : F ⊢ x = y"
{globals = defGlobals `mergeLeft` fromList
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'"))),
("W", mkDef zero (TYPE 0) (FT "E" `And` FT "E"))]} $
equalE (MkTyContext new [< FT "W", FT "W"]) (BV 0) (BV 1)
],
"term closure" :- [
testEq "[#0]{} = [#0] : A" $
equalT (MkTyContext new [< FT "A"]) (FT "A")
(CloT (BVT 0) id)
(BVT 0),
testEq "[#0]{a} = [a] : A" $
equalT empty (FT "A")
(CloT (BVT 0) (F "a" ::: id))
(FT "a"),
testEq "[#0]{a,b} = [a] : A" $
equalT empty (FT "A")
(CloT (BVT 0) (F "a" ::: F "b" ::: id))
(FT "a"),
testEq "[#1]{a,b} = [b] : A" $
equalT empty (FT "A")
(CloT (BVT 1) (F "a" ::: F "b" ::: id))
(FT "b"),
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (N)" $
equalT empty (Arr Zero (FT "B") (FT "A"))
(CloT (Lam $ S ["y"] $ N $ BVT 0) (F "a" ::: id))
(Lam $ S ["y"] $ N $ FT "a"),
testEq "(λy. [#1]){a} = λy. [a] : B ⇾ A (Y)" $
equalT empty (Arr Zero (FT "B") (FT "A"))
(CloT (["y"] :\\ BVT 1) (F "a" ::: id))
(["y"] :\\ FT "a")
],
"term d-closure" :- [
testEq "★₀‹𝟎› = ★₀ : ★₁" $
equalTD 1 empty (TYPE 1) (DCloT (TYPE 0) (K Zero ::: id)) (TYPE 0),
testEq "(λᴰ i ⇒ a)𝟎 = (λᴰ i ⇒ a) : (a ≡ a : A)" $
equalTD 1 empty
(Eq0 (FT "A") (FT "a") (FT "a"))
(DCloT (["i"] :\\% FT "a") (K Zero ::: id))
(["i"] :\\% FT "a"),
note "it is hard to think of well-typed terms with big dctxs"
],
"free var" :-
let au_bu = fromList
[("A", mkDef Any (TYPE (U 1)) (TYPE (U 0))),
("B", mkDef Any (TYPE (U 1)) (TYPE (U 0)))]
au_ba = fromList
[("A", mkDef Any (TYPE (U 1)) (TYPE (U 0))),
("B", mkDef Any (TYPE (U 1)) (FT "A"))]
in [
testEq "A = A" $
equalE empty (F "A") (F "A"),
testNeq "A ≠ B" $
equalE empty (F "A") (F "B"),
testEq "0=1 ⊢ A = B" $
equalE (MkTyContext ZeroIsOne [<]) (F "A") (F "B"),
testEq "A : ★₁ ≔ ★₀ ⊢ A = (★₀ ∷ ★₁)" {globals = au_bu} $
equalE empty (F "A") (TYPE 0 :# TYPE 1),
testEq "A : ★₁ ≔ ★₀ ⊢ [A] = ★₀" {globals = au_bu} $
equalT empty (TYPE 1) (FT "A") (TYPE 0),
testEq "A ≔ ★₀, B ≔ ★₀ ⊢ A = B" {globals = au_bu} $
equalE empty (F "A") (F "B"),
testEq "A ≔ ★₀, B ≔ A ⊢ A = B" {globals = au_ba} $
equalE empty (F "A") (F "B"),
testEq "A <: A" $
subE empty (F "A") (F "A"),
testNeq "A ≮: B" $
subE empty (F "A") (F "B"),
testEq "A : ★₃ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 3) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
note "(A and B in different universes)",
testEq "A : ★₁ ≔ ★₀, B : ★₃ ≔ ★₂ ⊢ A <: B"
{globals = fromList [("A", mkDef Any (TYPE 1) (TYPE 0)),
("B", mkDef Any (TYPE 3) (TYPE 2))]} $
subE empty (F "A") (F "B"),
testEq "0=1 ⊢ A <: B" $
subE (MkTyContext ZeroIsOne [<]) (F "A") (F "B")
],
"bound var" :- [
testEq "#0 = #0" $
equalE (MkTyContext new [< TYPE 0]) (BV 0) (BV 0),
testEq "#0 <: #0" $
subE (MkTyContext new [< TYPE 0]) (BV 0) (BV 0),
testNeq "#0 ≠ #1" $
equalE (MkTyContext new [< TYPE 0, TYPE 0]) (BV 0) (BV 1),
testNeq "#0 ≮: #1" $
subE (MkTyContext new [< TYPE 0, TYPE 0]) (BV 0) (BV 1),
testEq "0=1 ⊢ #0 = #1" $
equalE (MkTyContext ZeroIsOne [< TYPE 0, TYPE 0]) (BV 0) (BV 1)
],
"application" :- [
testEq "f [a] = f [a]" $
equalE empty (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "f [a] <: f [a]" $
subE empty (F "f" :@ FT "a") (F "f" :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a = ([a ∷ A] ∷ A) (β)" $
equalE empty
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(E (FT "a" :# FT "A") :# FT "A"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a = a (βυ)" $
equalE empty
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a"),
testEq "(λ g ⇒ [g [a]] ∷ ⋯)) [f] = (λ y ⇒ [f [y]] ∷ ⋯) [a] (β↘↙)" $
let a = FT "A"; a2a = (Arr One a a) in
equalE empty
(((["g"] :\\ E (BV 0 :@ FT "a")) :# Arr One a2a a) :@ FT "f")
(((["y"] :\\ E (F "f" :@ BVT 0)) :# a2a) :@ FT "a"),
testEq "(λ x ⇒ [x] ∷ A ⊸ A) a <: a" $
subE empty
(((["x"] :\\ BVT 0) :# (Arr One (FT "A") (FT "A"))) :@ FT "a")
(F "a"),
note "id : A ⊸ A ≔ λ x ⇒ [x]",
testEq "id [a] = a" $ equalE empty (F "id" :@ FT "a") (F "a"),
testEq "id [a] <: a" $ subE empty (F "id" :@ FT "a") (F "a")
],
todo "dim application",
"annotation" :- [
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = [f] ∷ A ⊸ A" $
equalE empty
((["x"] :\\ E (F "f" :@ BVT 0)) :# Arr One (FT "A") (FT "A"))
(FT "f" :# Arr One (FT "A") (FT "A")),
testEq "[f] ∷ A ⊸ A = f" $
equalE empty (FT "f" :# Arr One (FT "A") (FT "A")) (F "f"),
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = f" $
equalE empty
((["x"] :\\ E (F "f" :@ BVT 0)) :# Arr One (FT "A") (FT "A"))
(F "f")
],
"elim closure" :- [
testEq "#0{a} = a" $
equalE empty (CloE (BV 0) (F "a" ::: id)) (F "a"),
testEq "#1{a} = #0" $
equalE (MkTyContext new [< FT "A"])
(CloE (BV 1) (F "a" ::: id)) (BV 0)
],
"elim d-closure" :- [
note "0·eq-ab : (A ≡ B : ★₀)",
testEq "(eq-ab #0)𝟎 = eq-ab 𝟎" $
equalED 1 empty
(DCloE (F "eq-ab" :% BV 0) (K Zero ::: id))
(F "eq-ab" :% K Zero),
testEq "(eq-ab #0)𝟎 = A" $
equalED 1 empty (DCloE (F "eq-ab" :% BV 0) (K Zero ::: id)) (F "A"),
testEq "(eq-ab #0)𝟏 = B" $
equalED 1 empty (DCloE (F "eq-ab" :% BV 0) (K One ::: id)) (F "B"),
testNeq "(eq-ab #0)𝟏 ≠ A" $
equalED 1 empty (DCloE (F "eq-ab" :% BV 0) (K One ::: id)) (F "A"),
testEq "(eq-ab #0)#0,𝟎 = (eq-ab #0)" $
equalED 2 empty
(DCloE (F "eq-ab" :% BV 0) (BV 0 ::: K Zero ::: id))
(F "eq-ab" :% BV 0),
testNeq "(eq-ab #0)𝟎 ≠ (eq-ab 𝟎)" $
equalED 2 empty
(DCloE (F "eq-ab" :% BV 0) (BV 0 ::: K Zero ::: id))
(F "eq-ab" :% K Zero),
testEq "#0𝟎 = #0 # term and dim vars distinct" $
equalED 1 (MkTyContext new [< FT "A"])
(DCloE (BV 0) (K Zero ::: id)) (BV 0),
testEq "a𝟎 = a" $
equalED 1 empty (DCloE (F "a") (K Zero ::: id)) (F "a"),
testEq "(f [a])𝟎 = f𝟎 [a]𝟎" $
let th = K Zero ::: id in
equalED 1 empty
(DCloE (F "f" :@ FT "a") th)
(DCloE (F "f") th :@ DCloT (FT "a") th)
],
"clashes" :- [
testNeq "★₀ ≠ ★₀ ⇾ ★₀" $
equalT empty (TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
testEq "0=1 ⊢ ★₀ = ★₀ ⇾ ★₀" $
equalT (MkTyContext ZeroIsOne [<])
(TYPE 1) (TYPE 0) (Arr Zero (TYPE 0) (TYPE 0)),
todo "others"
]
]