485 lines
19 KiB
Idris
485 lines
19 KiB
Idris
module Tests.Typechecker
|
||
|
||
import Quox.Syntax
|
||
import Quox.Typechecker as Lib
|
||
import public TypingImpls
|
||
import TAP
|
||
import Quox.EffExtra
|
||
|
||
|
||
data Error'
|
||
= TCError Typing.Error
|
||
| WrongInfer (Term d n) (Term d n)
|
||
| WrongQOut (QOutput n) (QOutput n)
|
||
|
||
export
|
||
ToInfo Error' where
|
||
toInfo (TCError e) = toInfo e
|
||
toInfo (WrongInfer good bad) =
|
||
[("type", "WrongInfer"),
|
||
("wanted", prettyStr True good),
|
||
("got", prettyStr True bad)]
|
||
toInfo (WrongQOut good bad) =
|
||
[("type", "WrongQOut"),
|
||
("wanted", prettyStr True good),
|
||
("wanted", prettyStr True bad)]
|
||
|
||
0 M : Type -> Type
|
||
M = Eff [Except Error', DefsReader]
|
||
|
||
inj : TC a -> M a
|
||
inj = rethrow . mapFst TCError <=< lift . runExcept
|
||
|
||
|
||
reflTy : Term d n
|
||
reflTy =
|
||
Pi_ Zero "A" (TYPE 0) $
|
||
Pi_ One "x" (BVT 0) $
|
||
Eq0 (BVT 1) (BVT 0) (BVT 0)
|
||
|
||
reflDef : Term d n
|
||
reflDef = [< "A","x"] :\\ [< "i"] :\\% BVT 0
|
||
|
||
|
||
fstTy : Term d n
|
||
fstTy =
|
||
(Pi_ Zero "A" (TYPE 1) $
|
||
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
|
||
Arr Any (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) (BVT 1))
|
||
|
||
fstDef : Term d n
|
||
fstDef =
|
||
([< "A","B","p"] :\\
|
||
E (CasePair Any (BV 0) (SN $ BVT 2) (SY [< "x","y"] $ BVT 1)))
|
||
|
||
sndTy : Term d n
|
||
sndTy =
|
||
(Pi_ Zero "A" (TYPE 1) $
|
||
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
|
||
Pi_ Any "p" (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) $
|
||
E (BV 1 :@ E (F "fst" :@@ [BVT 2, BVT 1, BVT 0])))
|
||
|
||
sndDef : Term d n
|
||
sndDef =
|
||
([< "A","B","p"] :\\
|
||
E (CasePair Any (BV 0)
|
||
(SY [< "p"] $ E $ BV 2 :@ E (F "fst" :@@ [BVT 3, BVT 2, BVT 0]))
|
||
(SY [< "x","y"] $ BVT 0)))
|
||
|
||
|
||
defGlobals : Definitions
|
||
defGlobals = fromList
|
||
[("A", mkPostulate gzero $ TYPE 0),
|
||
("B", mkPostulate gzero $ TYPE 0),
|
||
("C", mkPostulate gzero $ TYPE 1),
|
||
("D", mkPostulate gzero $ TYPE 1),
|
||
("P", mkPostulate gzero $ Arr Any (FT "A") (TYPE 0)),
|
||
("a", mkPostulate gany $ FT "A"),
|
||
("a'", mkPostulate gany $ FT "A"),
|
||
("b", mkPostulate gany $ FT "B"),
|
||
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
|
||
("g", mkPostulate gany $ Arr One (FT "A") (FT "B")),
|
||
("f2", mkPostulate gany $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
|
||
("p", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
|
||
("q", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
|
||
("refl", mkDef gany reflTy reflDef),
|
||
("fst", mkDef gany fstTy fstDef),
|
||
("snd", mkDef gany sndTy sndDef)]
|
||
|
||
parameters (label : String) (act : Lazy (M ()))
|
||
{default defGlobals globals : Definitions}
|
||
testTC : Test
|
||
testTC = test label {e = Error', a = ()} $
|
||
extract $ runExcept $ runReader globals act
|
||
|
||
testTCFail : Test
|
||
testTCFail = testThrows label (const True) $
|
||
(extract $ runExcept $ runReader globals act) $> "()"
|
||
|
||
|
||
anys : {n : Nat} -> QContext n
|
||
anys {n = 0} = [<]
|
||
anys {n = S n} = anys :< Any
|
||
|
||
ctx, ctx01 : {n : Nat} -> Context (\n => (BaseName, Term 0 n)) n ->
|
||
TyContext 0 n
|
||
ctx tel = let (ns, ts) = unzip tel in
|
||
MkTyContext new [<] ts ns anys
|
||
ctx01 tel = let (ns, ts) = unzip tel in
|
||
MkTyContext ZeroIsOne [<] ts ns anys
|
||
|
||
empty01 : TyContext 0 0
|
||
empty01 = eqDim (K Zero) (K One) empty
|
||
|
||
inferredTypeEq : TyContext d n -> (exp, got : Term d n) -> M ()
|
||
inferredTypeEq ctx exp got =
|
||
wrapErr (const $ WrongInfer exp got) $ inj $ equalType ctx exp got
|
||
|
||
qoutEq : (exp, got : QOutput n) -> M ()
|
||
qoutEq qout res = unless (qout == res) $ throw $ WrongQOut qout res
|
||
|
||
inferAs : TyContext d n -> (sg : SQty) -> Elim d n -> Term d n -> M ()
|
||
inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do
|
||
case !(inj $ infer ctx sg e) of
|
||
Just res => inferredTypeEq ctx ty res.type
|
||
Nothing => pure ()
|
||
|
||
inferAsQ : TyContext d n -> (sg : SQty) ->
|
||
Elim d n -> Term d n -> QOutput n -> M ()
|
||
inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do
|
||
case !(inj $ infer ctx sg e) of
|
||
Just res => do
|
||
inferredTypeEq ctx ty res.type
|
||
qoutEq qout res.qout
|
||
Nothing => pure ()
|
||
|
||
infer_ : TyContext d n -> (sg : SQty) -> Elim d n -> M ()
|
||
infer_ ctx sg e = ignore $ inj $ infer ctx sg e
|
||
|
||
checkQ : TyContext d n -> SQty ->
|
||
Term d n -> Term d n -> QOutput n -> M ()
|
||
checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do
|
||
case !(inj $ check ctx sg s ty) of
|
||
Just res => qoutEq qout res
|
||
Nothing => pure ()
|
||
|
||
check_ : TyContext d n -> SQty -> Term d n -> Term d n -> M ()
|
||
check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty
|
||
|
||
checkType_ : TyContext d n -> Term d n -> Maybe Universe -> M ()
|
||
checkType_ ctx s u = inj $ checkType ctx s u
|
||
|
||
|
||
export
|
||
tests : Test
|
||
tests = "typechecker" :- [
|
||
"universes" :- [
|
||
testTC "0 · ★₀ ⇐ ★₁ # by checkType" $
|
||
checkType_ empty (TYPE 0) (Just 1),
|
||
testTC "0 · ★₀ ⇐ ★₁ # by check" $
|
||
check_ empty szero (TYPE 0) (TYPE 1),
|
||
testTC "0 · ★₀ ⇐ ★₂" $
|
||
checkType_ empty (TYPE 0) (Just 2),
|
||
testTC "0 · ★₀ ⇐ ★_" $
|
||
checkType_ empty (TYPE 0) Nothing,
|
||
testTCFail "0 · ★₁ ⇍ ★₀" $
|
||
checkType_ empty (TYPE 1) (Just 0),
|
||
testTCFail "0 · ★₀ ⇍ ★₀" $
|
||
checkType_ empty (TYPE 0) (Just 0),
|
||
testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $
|
||
checkType_ empty01 (TYPE 1) (Just 0),
|
||
testTCFail "1 · ★₀ ⇍ ★₁ # by check" $
|
||
check_ empty sone (TYPE 0) (TYPE 1)
|
||
],
|
||
|
||
"function types" :- [
|
||
note "A, B : ★₀; C, D : ★₁; P : A ⇾ ★₀",
|
||
testTC "0 · A ⊸ B ⇐ ★₀" $
|
||
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 0),
|
||
note "subtyping",
|
||
testTC "0 · A ⊸ B ⇐ ★₁" $
|
||
check_ empty szero (Arr One (FT "A") (FT "B")) (TYPE 1),
|
||
testTC "0 · C ⊸ D ⇐ ★₁" $
|
||
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 1),
|
||
testTCFail "0 · C ⊸ D ⇍ ★₀" $
|
||
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 0),
|
||
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
|
||
check_ empty szero
|
||
(Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0)
|
||
(TYPE 0),
|
||
testTCFail "0 · A ⊸ P ⇍ ★₀" $
|
||
check_ empty szero (Arr One (FT "A") $ FT "P") (TYPE 0),
|
||
testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $
|
||
check_ empty01 szero (Arr One (FT "A") $ FT "P") (TYPE 0)
|
||
],
|
||
|
||
"pair types" :- [
|
||
note #""A × B" for "(_ : A) × B""#,
|
||
testTC "0 · A × A ⇐ ★₀" $
|
||
check_ empty szero (FT "A" `And` FT "A") (TYPE 0),
|
||
testTCFail "0 · A × P ⇍ ★₀" $
|
||
check_ empty szero (FT "A" `And` FT "P") (TYPE 0),
|
||
testTC "0 · (x : A) × P x ⇐ ★₀" $
|
||
check_ empty szero
|
||
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 0),
|
||
testTC "0 · (x : A) × P x ⇐ ★₁" $
|
||
check_ empty szero
|
||
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 1),
|
||
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
|
||
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 1),
|
||
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
|
||
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 0),
|
||
testTCFail "1 · A × A ⇍ ★₀" $
|
||
check_ empty sone (FT "A" `And` FT "A") (TYPE 0)
|
||
],
|
||
|
||
"enum types" :- [
|
||
testTC "0 · {} ⇐ ★₀" $ check_ empty szero (enum []) (TYPE 0),
|
||
testTC "0 · {} ⇐ ★₃" $ check_ empty szero (enum []) (TYPE 3),
|
||
testTC "0 · {a,b,c} ⇐ ★₀" $
|
||
check_ empty szero (enum ["a", "b", "c"]) (TYPE 0),
|
||
testTC "0 · {a,b,c} ⇐ ★₃" $
|
||
check_ empty szero (enum ["a", "b", "c"]) (TYPE 3),
|
||
testTCFail "1 · {} ⇍ ★₀" $ check_ empty sone (enum []) (TYPE 0),
|
||
testTC "0=1 ⊢ 1 · {} ⇐ ★₀" $ check_ empty01 sone (enum []) (TYPE 0)
|
||
],
|
||
|
||
"free vars" :- [
|
||
note "A : ★₀",
|
||
testTC "0 · A ⇒ ★₀" $
|
||
inferAs empty szero (F "A") (TYPE 0),
|
||
testTC "0 · [A] ⇐ ★₀" $
|
||
check_ empty szero (FT "A") (TYPE 0),
|
||
note "subtyping",
|
||
testTC "0 · [A] ⇐ ★₁" $
|
||
check_ empty szero (FT "A") (TYPE 1),
|
||
note "(fail) runtime-relevant type",
|
||
testTCFail "1 · A ⇏ ★₀" $
|
||
infer_ empty sone (F "A"),
|
||
note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ δ _ ⇒ x)",
|
||
testTC "1 · refl ⇒ ⋯" $ inferAs empty sone (F "refl") reflTy,
|
||
testTC "1 · [refl] ⇐ ⋯" $ check_ empty sone (FT "refl") reflTy
|
||
],
|
||
|
||
"bound vars" :- [
|
||
testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $
|
||
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
|
||
(BV 0) (FT "A") [< One],
|
||
testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $
|
||
checkQ {n = 1} (ctx [< ("x", FT "A")]) sone (BVT 0) (FT "A") [< One],
|
||
note "f2 : A ⊸ A ⊸ B",
|
||
testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ B ⊳ ω·x" $
|
||
inferAsQ {n = 1} (ctx [< ("x", FT "A")]) sone
|
||
(F "f2" :@@ [BVT 0, BVT 0]) (FT "B") [< Any]
|
||
],
|
||
|
||
"lambda" :- [
|
||
note "linear & unrestricted identity",
|
||
testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $
|
||
check_ empty sone ([< "x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")),
|
||
testTC "1 · (λ x ⇒ x) ⇐ A → A" $
|
||
check_ empty sone ([< "x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")),
|
||
note "(fail) zero binding used relevantly",
|
||
testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $
|
||
check_ empty sone ([< "x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
|
||
note "(but ok in overall erased context)",
|
||
testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $
|
||
check_ empty szero ([< "x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")),
|
||
testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $
|
||
check_ empty sone
|
||
([< "A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0]))
|
||
reflTy,
|
||
testTC "1 · (λ A x ⇒ δ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $
|
||
check_ empty sone reflDef reflTy
|
||
],
|
||
|
||
"pairs" :- [
|
||
testTC "1 · (a, a) ⇐ A × A" $
|
||
check_ empty sone (Pair (FT "a") (FT "a")) (FT "A" `And` FT "A"),
|
||
testTC "x : A ⊢ 1 · (x, x) ⇐ A × A ⊳ ω·x" $
|
||
checkQ (ctx [< ("x", FT "A")]) sone
|
||
(Pair (BVT 0) (BVT 0)) (FT "A" `And` FT "A") [< Any],
|
||
testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $
|
||
check_ empty sone
|
||
(Pair (FT "a") ([< "i"] :\\% FT "a"))
|
||
(Sig_ "x" (FT "A") $ Eq0 (FT "A") (BVT 0) (FT "a"))
|
||
],
|
||
|
||
"unpairing" :- [
|
||
testTC "x : A × A ⊢ 1 · (case1 x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 1·x" $
|
||
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
|
||
(CasePair One (BV 0) (SN $ FT "B")
|
||
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
|
||
(FT "B") [< One],
|
||
testTC "x : A × A ⊢ 1 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ ω·x" $
|
||
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) sone
|
||
(CasePair Any (BV 0) (SN $ FT "B")
|
||
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
|
||
(FT "B") [< Any],
|
||
testTC "x : A × A ⊢ 0 · (caseω x return B of (l,r) ⇒ f2 l r) ⇒ B ⊳ 0·x" $
|
||
inferAsQ (ctx [< ("x", FT "A" `And` FT "A")]) szero
|
||
(CasePair Any (BV 0) (SN $ FT "B")
|
||
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0]))
|
||
(FT "B") [< Zero],
|
||
testTCFail "x : A × A ⊢ 1 · (case0 x return B of (l,r) ⇒ f2 l r) ⇏" $
|
||
infer_ (ctx [< ("x", FT "A" `And` FT "A")]) sone
|
||
(CasePair Zero (BV 0) (SN $ FT "B")
|
||
(SY [< "l", "r"] $ E $ F "f2" :@@ [BVT 1, BVT 0])),
|
||
testTC "x : A × B ⊢ 1 · (caseω x return A of (l,r) ⇒ l) ⇒ A ⊳ ω·x" $
|
||
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) sone
|
||
(CasePair Any (BV 0) (SN $ FT "A")
|
||
(SY [< "l", "r"] $ BVT 1))
|
||
(FT "A") [< Any],
|
||
testTC "x : A × B ⊢ 0 · (case1 x return A of (l,r) ⇒ l) ⇒ A ⊳ 0·x" $
|
||
inferAsQ (ctx [< ("x", FT "A" `And` FT "B")]) szero
|
||
(CasePair One (BV 0) (SN $ FT "A")
|
||
(SY [< "l", "r"] $ BVT 1))
|
||
(FT "A") [< Zero],
|
||
testTCFail "x : A × B ⊢ 1 · (case1 x return A of (l,r) ⇒ l) ⇏" $
|
||
infer_ (ctx [< ("x", FT "A" `And` FT "B")]) sone
|
||
(CasePair One (BV 0) (SN $ FT "A")
|
||
(SY [< "l", "r"] $ BVT 1)),
|
||
note "fst : (0·A : ★₁) → (0·B : A ↠ ★₁) → ((x : A) × B x) ↠ A",
|
||
note " ≔ (λ A B p ⇒ caseω p return A of (x, y) ⇒ x)",
|
||
testTC "0 · ‹type of fst› ⇐ ★₂" $
|
||
check_ empty szero fstTy (TYPE 2),
|
||
testTC "1 · ‹def of fst› ⇐ ‹type of fst›" $
|
||
check_ empty sone fstDef fstTy,
|
||
note "snd : (0·A : ★₁) → (0·B : A ↠ ★₁) → (ω·p : (x : A) × B x) → B (fst A B p)",
|
||
note " ≔ (λ A B p ⇒ caseω p return p ⇒ B (fst A B p) of (x, y) ⇒ y)",
|
||
testTC "0 · ‹type of snd› ⇐ ★₂" $
|
||
check_ empty szero sndTy (TYPE 2),
|
||
testTC "1 · ‹def of snd› ⇐ ‹type of snd›" $
|
||
check_ empty sone sndDef sndTy,
|
||
testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $
|
||
inferAs empty szero
|
||
(F "snd" :@@ [TYPE 0, [< "x"] :\\ BVT 0])
|
||
(Pi_ Any "A" (Sig_ "A" (TYPE 0) $ BVT 0) $
|
||
(E $ F "fst" :@@ [TYPE 0, [< "x"] :\\ BVT 0, BVT 0]))
|
||
],
|
||
|
||
"enums" :- [
|
||
testTC "1 · 'a ⇐ {a}" $
|
||
check_ empty sone (Tag "a") (enum ["a"]),
|
||
testTC "1 · 'a ⇐ {a, b, c}" $
|
||
check_ empty sone (Tag "a") (enum ["a", "b", "c"]),
|
||
testTCFail "1 · 'a ⇍ {b, c}" $
|
||
check_ empty sone (Tag "a") (enum ["b", "c"]),
|
||
testTC "0=1 ⊢ 1 · 'a ⇐ {b, c}" $
|
||
check_ empty01 sone (Tag "a") (enum ["b", "c"])
|
||
],
|
||
|
||
"enum matching" :- [
|
||
testTC "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'tt ⇒ 'tt } ⇒ {tt}" $
|
||
inferAs (ctx [< ("x", enum ["tt"])]) sone
|
||
(CaseEnum One (BV 0) (SN (enum ["tt"])) $
|
||
singleton "tt" (Tag "tt"))
|
||
(enum ["tt"]),
|
||
testTCFail "ω.x : {tt} ⊢ 1 · case1 x return {tt} of { 'ff ⇒ 'tt } ⇏" $
|
||
infer_ (ctx [< ("x", enum ["tt"])]) sone
|
||
(CaseEnum One (BV 0) (SN (enum ["tt"])) $
|
||
singleton "ff" (Tag "tt"))
|
||
],
|
||
|
||
"equality types" :- [
|
||
testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ Type" $
|
||
checkType_ empty (Eq0 (TYPE 0) Nat Nat) Nothing,
|
||
testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ ★₁" $
|
||
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
|
||
testTCFail "1 · ℕ ≡ ℕ : ★₀ ⇍ ★₁" $
|
||
check_ empty sone (Eq0 (TYPE 0) Nat Nat) (TYPE 1),
|
||
testTC "0 · ℕ ≡ ℕ : ★₀ ⇐ ★₂" $
|
||
check_ empty szero (Eq0 (TYPE 0) Nat Nat) (TYPE 2),
|
||
testTC "0 · ℕ ≡ ℕ : ★₁ ⇐ ★₂" $
|
||
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 2),
|
||
testTCFail "0 · ℕ ≡ ℕ : ★₁ ⇍ ★₁" $
|
||
check_ empty szero (Eq0 (TYPE 1) Nat Nat) (TYPE 1),
|
||
testTCFail "0 ≡ 'beep : {beep} ⇍ Type" $
|
||
checkType_ empty (Eq0 (enum ["beep"]) Zero (Tag "beep")) Nothing,
|
||
testTC "ab : A ≡ B : ★₀, x : A, y : B ⊢ 0 · Eq [i ⇒ ab i] x y ⇐ ★₀" $
|
||
check_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
|
||
("x", FT "A"), ("y", FT "B")]) szero
|
||
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 1) (BVT 0))
|
||
(TYPE 0),
|
||
testTCFail "ab : A ≡ B : ★₀, x : A, y : B ⊢ Eq [i ⇒ ab i] y x ⇍ Type" $
|
||
checkType_ (ctx [< ("ab", Eq0 (TYPE 0) (FT "A") (FT "B")),
|
||
("x", FT "A"), ("y", FT "B")])
|
||
(Eq (SY [< "i"] $ E $ BV 2 :% BV 0) (BVT 0) (BVT 1))
|
||
Nothing
|
||
],
|
||
|
||
"equalities" :- [
|
||
testTC "1 · (δ i ⇒ a) ⇐ a ≡ a" $
|
||
check_ empty sone (DLam $ SN $ FT "a")
|
||
(Eq0 (FT "A") (FT "a") (FT "a")),
|
||
testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
|
||
check_ empty szero
|
||
([< "p","q"] :\\ [< "i"] :\\% BVT 1)
|
||
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
|
||
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
|
||
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
|
||
testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
|
||
check_ empty szero
|
||
([< "p","q"] :\\ [< "i"] :\\% BVT 0)
|
||
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
|
||
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
|
||
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0))
|
||
],
|
||
|
||
"natural numbers" :- [
|
||
testTC "0 · ℕ ⇐ ★₀" $ check_ empty szero Nat (TYPE 0),
|
||
testTC "0 · ℕ ⇐ ★₇" $ check_ empty szero Nat (TYPE 7),
|
||
testTCFail "1 · ℕ ⇍ ★₀" $ check_ empty sone Nat (TYPE 0),
|
||
testTC "1 · zero ⇐ ℕ" $ check_ empty sone Zero Nat,
|
||
testTCFail "1 · zero ⇍ ℕ×ℕ" $ check_ empty sone Zero (Nat `And` Nat),
|
||
testTC "ω·n : ℕ ⊢ 1 · succ n ⇐ ℕ" $
|
||
check_ (ctx [< ("n", Nat)]) sone (Succ (BVT 0)) Nat,
|
||
testTC "1 · λ n ⇒ succ n ⇐ 1.ℕ → ℕ" $
|
||
check_ empty sone ([< "n"] :\\ Succ (BVT 0)) (Arr One Nat Nat),
|
||
todo "nat elim"
|
||
],
|
||
|
||
"natural elim" :- [
|
||
note "1 · λ n ⇒ case1 n return ℕ of { zero ⇒ 0; succ n ⇒ n }",
|
||
note " ⇐ 1.ℕ → ℕ",
|
||
testTC "pred" $
|
||
check_ empty sone
|
||
([< "n"] :\\ E (CaseNat One Zero (BV 0) (SN Nat)
|
||
Zero (SY [< "n", Unused] $ BVT 1)))
|
||
(Arr One Nat Nat),
|
||
note "1 · λ m n ⇒ case1 m return ℕ of { zero ⇒ n; succ _, 1.p ⇒ succ p }",
|
||
note " ⇐ 1.ℕ → 1.ℕ → 1.ℕ",
|
||
testTC "plus" $
|
||
check_ empty sone
|
||
([< "m", "n"] :\\ E (CaseNat One One (BV 1) (SN Nat)
|
||
(BVT 0) (SY [< Unused, "p"] $ Succ $ BVT 0)))
|
||
(Arr One Nat $ Arr One Nat Nat)
|
||
],
|
||
|
||
"box types" :- [
|
||
testTC "0 · [0.ℕ] ⇐ ★₀" $
|
||
check_ empty szero (BOX Zero Nat) (TYPE 0),
|
||
testTC "0 · [0.★₀] ⇐ ★₁" $
|
||
check_ empty szero (BOX Zero (TYPE 0)) (TYPE 1),
|
||
testTCFail "0 · [0.★₀] ⇍ ★₀" $
|
||
check_ empty szero (BOX Zero (TYPE 0)) (TYPE 0)
|
||
],
|
||
|
||
todo "box values",
|
||
todo "box elim",
|
||
|
||
"misc" :- [
|
||
note "0·A : Type, 0·P : A → Type, ω·p : (1·x : A) → P x",
|
||
note "⊢",
|
||
note "1 · λ x y xy ⇒ δ i ⇒ p (xy i)",
|
||
note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)",
|
||
testTC "cong" $
|
||
check_ empty sone
|
||
([< "x", "y", "xy"] :\\ [< "i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
|
||
(Pi_ Zero "x" (FT "A") $
|
||
Pi_ Zero "y" (FT "A") $
|
||
Pi_ One "xy" (Eq0 (FT "A") (BVT 1) (BVT 0)) $
|
||
Eq_ "i" (E $ F "P" :@ E (BV 0 :% BV 0))
|
||
(E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)),
|
||
note "0·A : Type, 0·P : ω·A → Type,",
|
||
note "ω·p q : (1·x : A) → P x",
|
||
note "⊢",
|
||
note "1 · λ eq ⇒ δ i ⇒ λ x ⇒ eq x i",
|
||
note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q",
|
||
testTC "funext" $
|
||
check_ empty sone
|
||
([< "eq"] :\\ [< "i"] :\\% [< "x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
|
||
(Pi_ One "eq"
|
||
(Pi_ One "x" (FT "A")
|
||
(Eq0 (E $ F "P" :@ BVT 0)
|
||
(E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)))
|
||
(Eq0 (Pi_ Any "x" (FT "A") $ E $ F "P" :@ BVT 0) (FT "p") (FT "q"))),
|
||
todo "absurd (when coerce is in)"
|
||
-- absurd : (`true ≡ `false : {true, false}) ⇾ (0·A : ★₀) → A ≔
|
||
-- λ e ⇒
|
||
-- case coerce [i ⇒ case e @i return ★₀ of {`true ⇒ {tt}; `false ⇒ {}}]
|
||
-- @0 @1 `tt
|
||
-- return A
|
||
-- of { }
|
||
]
|
||
]
|