WIP: 𝕎 #25
14 changed files with 544 additions and 94 deletions
|
@ -19,6 +19,9 @@ parameters (k : Universe)
|
||||||
doDisplace (Lam body loc) = Lam (doDisplaceS body) loc
|
doDisplace (Lam body loc) = Lam (doDisplaceS body) loc
|
||||||
doDisplace (Sig fst snd loc) = Sig (doDisplace fst) (doDisplaceS snd) loc
|
doDisplace (Sig fst snd loc) = Sig (doDisplace fst) (doDisplaceS snd) loc
|
||||||
doDisplace (Pair fst snd loc) = Pair (doDisplace fst) (doDisplace snd) loc
|
doDisplace (Pair fst snd loc) = Pair (doDisplace fst) (doDisplace snd) loc
|
||||||
|
doDisplace (W shape body loc) =
|
||||||
|
W (doDisplace shape) (doDisplaceS body) loc
|
||||||
|
doDisplace (Sup root sub loc) = Sup (doDisplace root) (doDisplace sub) loc
|
||||||
doDisplace (Enum cases loc) = Enum cases loc
|
doDisplace (Enum cases loc) = Enum cases loc
|
||||||
doDisplace (Tag tag loc) = Tag tag loc
|
doDisplace (Tag tag loc) = Tag tag loc
|
||||||
doDisplace (Eq ty l r loc) =
|
doDisplace (Eq ty l r loc) =
|
||||||
|
@ -47,6 +50,8 @@ parameters (k : Universe)
|
||||||
doDisplace (App fun arg loc) = App (doDisplace fun) (doDisplace arg) loc
|
doDisplace (App fun arg loc) = App (doDisplace fun) (doDisplace arg) loc
|
||||||
doDisplace (CasePair qty pair ret body loc) =
|
doDisplace (CasePair qty pair ret body loc) =
|
||||||
CasePair qty (doDisplace pair) (doDisplaceS ret) (doDisplaceS body) loc
|
CasePair qty (doDisplace pair) (doDisplaceS ret) (doDisplaceS body) loc
|
||||||
|
doDisplace (CaseW qty qtyIH tree ret body loc) =
|
||||||
|
CaseW qty qtyIH (doDisplace tree) (doDisplaceS ret) (doDisplaceS body) loc
|
||||||
doDisplace (CaseEnum qty tag ret arms loc) =
|
doDisplace (CaseEnum qty tag ret arms loc) =
|
||||||
CaseEnum qty (doDisplace tag) (doDisplaceS ret) (map doDisplace arms) loc
|
CaseEnum qty (doDisplace tag) (doDisplaceS ret) (map doDisplace arms) loc
|
||||||
doDisplace (CaseNat qty qtyIH nat ret zero succ loc) =
|
doDisplace (CaseNat qty qtyIH nat ret zero succ loc) =
|
||||||
|
|
|
@ -26,6 +26,26 @@ local_ : Has (State s) fs => s -> Eff fs a -> Eff fs a
|
||||||
local_ = localAt_ ()
|
local_ = localAt_ ()
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
record StateRes s a where
|
||||||
|
constructor SR
|
||||||
|
state : s
|
||||||
|
result : a
|
||||||
|
|
||||||
|
export
|
||||||
|
stateAt : (0 lbl : tag) -> Has (StateL lbl s) fs =>
|
||||||
|
(s -> StateRes s a) -> Eff fs a
|
||||||
|
stateAt lbl f = do
|
||||||
|
s <- getAt lbl
|
||||||
|
let out = f s
|
||||||
|
putAt lbl out.state
|
||||||
|
pure out.result
|
||||||
|
|
||||||
|
export %inline
|
||||||
|
state : Has (State s) fs => (s -> StateRes s a) -> Eff fs a
|
||||||
|
state = stateAt ()
|
||||||
|
|
||||||
|
|
||||||
export
|
export
|
||||||
hasDrop : (0 neq : Not (a = b)) ->
|
hasDrop : (0 neq : Not (a = b)) ->
|
||||||
(ha : Has a fs) => (hb : Has b fs) =>
|
(ha : Has a fs) => (hb : Has b fs) =>
|
||||||
|
|
|
@ -79,6 +79,8 @@ sameTyCon (Pi {}) (Pi {}) = True
|
||||||
sameTyCon (Pi {}) _ = False
|
sameTyCon (Pi {}) _ = False
|
||||||
sameTyCon (Sig {}) (Sig {}) = True
|
sameTyCon (Sig {}) (Sig {}) = True
|
||||||
sameTyCon (Sig {}) _ = False
|
sameTyCon (Sig {}) _ = False
|
||||||
|
sameTyCon (W {}) (W {}) = True
|
||||||
|
sameTyCon (W {}) _ = False
|
||||||
sameTyCon (Enum {}) (Enum {}) = True
|
sameTyCon (Enum {}) (Enum {}) = True
|
||||||
sameTyCon (Enum {}) _ = False
|
sameTyCon (Enum {}) _ = False
|
||||||
sameTyCon (Eq {}) (Eq {}) = True
|
sameTyCon (Eq {}) (Eq {}) = True
|
||||||
|
@ -111,6 +113,7 @@ isSubSing defs ctx ty0 = do
|
||||||
Sig {fst, snd, _} =>
|
Sig {fst, snd, _} =>
|
||||||
isSubSing defs ctx fst `andM`
|
isSubSing defs ctx fst `andM`
|
||||||
isSubSing defs (extendTy Zero snd.name fst ctx) snd.term
|
isSubSing defs (extendTy Zero snd.name fst ctx) snd.term
|
||||||
|
W {} => pure False
|
||||||
Enum {cases, _} =>
|
Enum {cases, _} =>
|
||||||
pure $ length (SortedSet.toList cases) <= 1
|
pure $ length (SortedSet.toList cases) <= 1
|
||||||
Eq {} => pure True
|
Eq {} => pure True
|
||||||
|
@ -120,6 +123,7 @@ isSubSing defs ctx ty0 = do
|
||||||
E _ => pure False
|
E _ => pure False
|
||||||
Lam {} => pure False
|
Lam {} => pure False
|
||||||
Pair {} => pure False
|
Pair {} => pure False
|
||||||
|
Sup {} => pure False
|
||||||
Tag {} => pure False
|
Tag {} => pure False
|
||||||
DLam {} => pure False
|
DLam {} => pure False
|
||||||
Zero {} => pure False
|
Zero {} => pure False
|
||||||
|
@ -209,9 +213,9 @@ parameters (defs : Definitions)
|
||||||
case (s, t) of
|
case (s, t) of
|
||||||
-- Γ ⊢ s₁ = t₁ : A Γ ⊢ s₂ = t₂ : B{s₁/x}
|
-- Γ ⊢ s₁ = t₁ : A Γ ⊢ s₂ = t₂ : B{s₁/x}
|
||||||
-- --------------------------------------------
|
-- --------------------------------------------
|
||||||
-- Γ ⊢ (s₁, t₁) = (s₂,t₂) : (x : A) × B
|
-- Γ ⊢ (s₁, t₁) = (s₂, t₂) : (x : A) × B
|
||||||
--
|
--
|
||||||
-- [todo] η for π ≥ 0 maybe
|
-- [todo] η for π ≰ 1 maybe
|
||||||
(Pair sFst sSnd {}, Pair tFst tSnd {}) => do
|
(Pair sFst sSnd {}, Pair tFst tSnd {}) => do
|
||||||
compare0 ctx fst sFst tFst
|
compare0 ctx fst sFst tFst
|
||||||
compare0 ctx (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd
|
compare0 ctx (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd
|
||||||
|
@ -225,6 +229,27 @@ parameters (defs : Definitions)
|
||||||
(E _, t) => wrongType t.loc ctx ty t
|
(E _, t) => wrongType t.loc ctx ty t
|
||||||
(s, _) => wrongType s.loc ctx ty s
|
(s, _) => wrongType s.loc ctx ty s
|
||||||
|
|
||||||
|
compare0' ctx ty@(W {shape, body, _}) s t =
|
||||||
|
case (s, t) of
|
||||||
|
-- Γ ⊢ s₁ = t₁ : A
|
||||||
|
-- Γ ⊢ s₂ = t₂ : 1.B[s₁∷A/x] → (x : A) ⊲ B
|
||||||
|
-- -----------------------------------------
|
||||||
|
-- Γ ⊢ s₁⋄s₂ = t₁⋄t₂ : (x : A) ⊲ B
|
||||||
|
(Sup sRoot sSub {}, Sup tRoot tSub {}) => do
|
||||||
|
compare0 ctx shape sRoot tRoot
|
||||||
|
let arg = sub1 body (Ann sRoot shape sRoot.loc)
|
||||||
|
subTy = Arr One arg ty ty.loc
|
||||||
|
compare0 ctx subTy sSub tSub
|
||||||
|
|
||||||
|
(E e, E f) => Elim.compare0 ctx e f
|
||||||
|
|
||||||
|
(Sup {}, E {}) => clashT s.loc ctx ty s t
|
||||||
|
(E {}, Sup {}) => clashT s.loc ctx ty s t
|
||||||
|
|
||||||
|
(Sup {}, t) => wrongType t.loc ctx ty t
|
||||||
|
(E {}, t) => wrongType t.loc ctx ty t
|
||||||
|
(s, _) => wrongType s.loc ctx ty s
|
||||||
|
|
||||||
compare0' ctx ty@(Enum {}) s t = local_ Equal $
|
compare0' ctx ty@(Enum {}) s t = local_ Equal $
|
||||||
case (s, t) of
|
case (s, t) of
|
||||||
-- --------------------
|
-- --------------------
|
||||||
|
@ -322,12 +347,16 @@ parameters (defs : Definitions)
|
||||||
-- Γ ⊢ Type 𝓀 <: Type ℓ
|
-- Γ ⊢ Type 𝓀 <: Type ℓ
|
||||||
expectModeU a.loc !mode k l
|
expectModeU a.loc !mode k l
|
||||||
|
|
||||||
compareType' ctx a@(Pi {qty = sQty, arg = sArg, res = sRes, _})
|
compareType' ctx (Pi {qty = sQty, arg = sArg, res = sRes, loc})
|
||||||
(Pi {qty = tQty, arg = tArg, res = tRes, _}) = do
|
(Pi {qty = tQty, arg = tArg, res = tRes, _}) = do
|
||||||
-- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
-- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
-- Γ ⊢ (π·x : A₁) → B₁ <: (π·x : A₂) → B₂
|
-- Γ ⊢ π.(x : A₁) → B₁ <: π.(x : A₂) → B₂
|
||||||
expectEqualQ a.loc sQty tQty
|
--
|
||||||
|
-- no quantity subtyping since that would need a runtime coercion
|
||||||
|
-- e.g. if ⌊0.A → B⌋ ⇝ ⌊B⌋, then the promotion to ω.A → B would need
|
||||||
|
-- to re-add the abstraction
|
||||||
|
expectEqualQ loc sQty tQty
|
||||||
local flip $ compareType ctx sArg tArg -- contra
|
local flip $ compareType ctx sArg tArg -- contra
|
||||||
compareType (extendTy Zero sRes.name sArg ctx) sRes.term tRes.term
|
compareType (extendTy Zero sRes.name sArg ctx) sRes.term tRes.term
|
||||||
|
|
||||||
|
@ -339,12 +368,20 @@ parameters (defs : Definitions)
|
||||||
compareType ctx sFst tFst
|
compareType ctx sFst tFst
|
||||||
compareType (extendTy Zero sSnd.name sFst ctx) sSnd.term tSnd.term
|
compareType (extendTy Zero sSnd.name sFst ctx) sSnd.term tSnd.term
|
||||||
|
|
||||||
|
compareType' ctx (W {shape = sShape, body = sBody, loc})
|
||||||
|
(W {shape = tShape, body = tBody, _}) = do
|
||||||
|
-- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
||||||
|
-- --------------------------------------
|
||||||
|
-- Γ ⊢ (x : A₁) ⊲ B₁ <: (x : A₂) ⊲ B₂
|
||||||
|
compareType ctx sShape tShape
|
||||||
|
compareType (extendTy Zero sBody.name sShape ctx) sBody.term tBody.term
|
||||||
|
|
||||||
compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _})
|
compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _})
|
||||||
(Eq {ty = tTy, l = tl, r = tr, _}) = do
|
(Eq {ty = tTy, l = tl, r = tr, _}) = do
|
||||||
-- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i›
|
-- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i›
|
||||||
-- Γ ⊢ l₁ = l₂ : A₁‹𝟎/i› Γ ⊢ r₁ = r₂ : A₁‹𝟏/i›
|
-- Γ ⊢ l₁ = l₂ : A₁‹0/i› Γ ⊢ r₁ = r₂ : A₁‹1/i›
|
||||||
-- ------------------------------------------------
|
-- ------------------------------------------------
|
||||||
-- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂
|
-- Γ ⊢ Eq (i ⇒ A₁) l₁ r₂ <: Eq (i ⇒ A₂) l₂ r₂
|
||||||
compareType (extendDim sTy.name Zero ctx) sTy.zero tTy.zero
|
compareType (extendDim sTy.name Zero ctx) sTy.zero tTy.zero
|
||||||
compareType (extendDim sTy.name One ctx) sTy.one tTy.one
|
compareType (extendDim sTy.name One ctx) sTy.one tTy.one
|
||||||
let ty = case !mode of Super => sTy; _ => tTy
|
let ty = case !mode of Super => sTy; _ => tTy
|
||||||
|
@ -366,6 +403,9 @@ parameters (defs : Definitions)
|
||||||
pure ()
|
pure ()
|
||||||
|
|
||||||
compareType' ctx (BOX pi a loc) (BOX rh b {}) = do
|
compareType' ctx (BOX pi a loc) (BOX rh b {}) = do
|
||||||
|
-- Γ ⊢ A <: B
|
||||||
|
-- --------------------
|
||||||
|
-- Γ ⊢ [π.A] <: [π.B]
|
||||||
expectEqualQ loc pi rh
|
expectEqualQ loc pi rh
|
||||||
compareType ctx a b
|
compareType ctx a b
|
||||||
|
|
||||||
|
@ -439,6 +479,36 @@ parameters (defs : Definitions)
|
||||||
expectEqualQ e.loc epi fpi
|
expectEqualQ e.loc epi fpi
|
||||||
compare0' ctx e@(CasePair {}) f _ _ = clashE e.loc ctx e f
|
compare0' ctx e@(CasePair {}) f _ _ = clashE e.loc ctx e f
|
||||||
|
|
||||||
|
-- Ψ | Γ ⊢ e = f ⇒ (x : A) ⊲ B
|
||||||
|
-- Ψ | Γ, p : (x : A) ⊲ B ⊢ Q = R ⇐ Type
|
||||||
|
-- Ψ | Γ, x : A, y : 1.B → (x : A) ⊲ B, ih : 1.(z : B) → Q[y z/p]
|
||||||
|
-- ⊢ s = t ⇐ Q[(x⋄y ∷ (x : A) ⊲ B)/p]
|
||||||
|
-- ----------------------------------------------------------------
|
||||||
|
-- Ψ | Γ ⊢ caseπ e return Q of { x ⋄ y, ς.ih ⇒ s }
|
||||||
|
-- = caseπ f return R of { x ⋄ y, ς.ih ⇒ t } ⇒ Q[e/p]
|
||||||
|
compare0' ctx (CaseW epi epi' e eret ebody eloc)
|
||||||
|
(CaseW fpi fpi' f fret fbody floc) ne nf =
|
||||||
|
local_ Equal $ do
|
||||||
|
compare0 ctx e f
|
||||||
|
ety <- computeElimTypeE defs ctx e @{noOr1 ne}
|
||||||
|
compareType (extendTy Zero eret.name ety ctx) eret.term fret.term
|
||||||
|
(shape, tbody) <- expectW defs ctx eloc ety
|
||||||
|
let [< x, y, ih] = ebody.names
|
||||||
|
z <- mnb "z" ih.loc
|
||||||
|
let xbind = (epi, x, shape)
|
||||||
|
ybind = (epi, y, Arr One tbody.term (weakT 1 ety) y.loc)
|
||||||
|
ihbind = (epi', ih,
|
||||||
|
PiY One z
|
||||||
|
(sub1 (weakS 2 tbody) (BV 1 x.loc))
|
||||||
|
(sub1 (weakS 3 eret) (App (BV 1 y.loc) (BVT 0 z.loc) ih.loc))
|
||||||
|
ih.loc)
|
||||||
|
ctx' = extendTyN [< xbind, ybind, ihbind] ctx
|
||||||
|
Term.compare0 ctx' (substCaseWRet ebody.names ety eret)
|
||||||
|
ebody.term fbody.term
|
||||||
|
expectEqualQ e.loc epi fpi
|
||||||
|
expectEqualQ e.loc epi' fpi'
|
||||||
|
compare0' ctx e@(CaseW {}) f _ _ = clashE e.loc ctx e f
|
||||||
|
|
||||||
-- Ψ | Γ ⊢ e = f ⇒ {𝐚s}
|
-- Ψ | Γ ⊢ e = f ⇒ {𝐚s}
|
||||||
-- Ψ | Γ, x : {𝐚s} ⊢ Q = R
|
-- Ψ | Γ, x : {𝐚s} ⊢ Q = R
|
||||||
-- Ψ | Γ ⊢ sᵢ = tᵢ ⇐ Q[𝐚ᵢ∷{𝐚s}]
|
-- Ψ | Γ ⊢ sᵢ = tᵢ ⇐ Q[𝐚ᵢ∷{𝐚s}]
|
||||||
|
@ -598,6 +668,13 @@ parameters (defs : Definitions)
|
||||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
||||||
compare0 ctx (weakT 2 ret) b1.term b2.term
|
compare0 ctx (weakT 2 ret) b1.term b2.term
|
||||||
|
|
||||||
|
compareArm_ ctx KW ret u b1 b2 = do
|
||||||
|
let [< a, b] = b1.names
|
||||||
|
ctx = extendTyN
|
||||||
|
[< (Zero, a, TYPE u a.loc),
|
||||||
|
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)] ctx
|
||||||
|
compare0 ctx (weakT 2 ret) b1.term b2.term
|
||||||
|
|
||||||
compareArm_ ctx KEnum ret u b1 b2 =
|
compareArm_ ctx KEnum ret u b1 b2 =
|
||||||
compare0 ctx ret b1.term b2.term
|
compare0 ctx ret b1.term b2.term
|
||||||
|
|
||||||
|
|
|
@ -4,7 +4,7 @@ import Quox.Loc
|
||||||
import Quox.CharExtra
|
import Quox.CharExtra
|
||||||
import public Data.SnocList
|
import public Data.SnocList
|
||||||
import Data.List
|
import Data.List
|
||||||
import Control.Eff
|
import Quox.EffExtra
|
||||||
import Text.Lexer
|
import Text.Lexer
|
||||||
import Derive.Prelude
|
import Derive.Prelude
|
||||||
|
|
||||||
|
@ -178,23 +178,22 @@ export
|
||||||
runNameGen : Has NameGen fs => Eff fs a -> Eff (fs - NameGen) a
|
runNameGen : Has NameGen fs => Eff fs a -> Eff (fs - NameGen) a
|
||||||
runNameGen = map fst . runNameGenWith 0
|
runNameGen = map fst . runNameGenWith 0
|
||||||
|
|
||||||
|
export
|
||||||
|
gen : Has NameGen fs => Eff fs Nat
|
||||||
|
gen = stateAt GEN $ \i => SR {result = i, state = S i}
|
||||||
|
|
||||||
||| generate a fresh name with the given base
|
||| generate a fresh name with the given base
|
||||||
export
|
export
|
||||||
mn : Has NameGen fs => PBaseName -> Eff fs BaseName
|
mn : Has NameGen fs => PBaseName -> Eff fs BaseName
|
||||||
mn base = do
|
mn base = MN base <$> gen
|
||||||
i <- getAt GEN
|
|
||||||
modifyAt GEN S
|
|
||||||
pure $ MN base i
|
|
||||||
|
|
||||||
||| generate a fresh binding name with the given base and
|
||| generate a fresh binding name with the given base and location `loc`
|
||||||
||| (optionally) location `loc`
|
|
||||||
export
|
export
|
||||||
mnb : Has NameGen fs =>
|
mnb : Has NameGen fs => PBaseName -> Loc -> Eff fs BindName
|
||||||
PBaseName -> {default noLoc loc : Loc} -> Eff fs BindName
|
mnb base loc = pure $ BN !(mn base) loc
|
||||||
mnb base = pure $ BN !(mn base) loc
|
|
||||||
|
|
||||||
export
|
export
|
||||||
fresh : Has NameGen fs => BindName -> Eff fs BindName
|
fresh : Has NameGen fs => BindName -> Eff fs BindName
|
||||||
fresh (BN (UN str) loc) = mnb str {loc}
|
fresh (BN (UN str) loc) = mnb str loc
|
||||||
fresh (BN (MN str k) loc) = mnb str {loc}
|
fresh (BN (MN str k) loc) = mnb str loc
|
||||||
fresh (BN Unused loc) = mnb "x" {loc}
|
fresh (BN Unused loc) = mnb "x" loc
|
||||||
|
|
|
@ -24,9 +24,13 @@ data PPrec
|
||||||
= Outer
|
= Outer
|
||||||
| Times -- "_ × _"
|
| Times -- "_ × _"
|
||||||
| InTimes -- arguments of ×
|
| InTimes -- arguments of ×
|
||||||
|
| W -- "_ ⊲ _"
|
||||||
|
| InW -- arguments of ⊲
|
||||||
| AnnL -- left of "∷"
|
| AnnL -- left of "∷"
|
||||||
| Eq -- "_ ≡ _ : _"
|
| Eq -- "_ ≡ _ : _"
|
||||||
| InEq -- arguments of ≡
|
| InEq -- arguments of ≡
|
||||||
|
| Sup -- "_ ⋄ _"
|
||||||
|
| InSup -- arguments of ⋄
|
||||||
-- ...
|
-- ...
|
||||||
| App -- term/dimension application
|
| App -- term/dimension application
|
||||||
| Arg -- argument to nonfix function
|
| Arg -- argument to nonfix function
|
||||||
|
@ -229,10 +233,10 @@ prettyDBind = hl DVar . prettyBind'
|
||||||
|
|
||||||
|
|
||||||
export %inline
|
export %inline
|
||||||
typeD, arrowD, darrowD, timesD, lamD, eqndD, dlamD, annD, natD,
|
typeD, arrowD, darrowD, timesD, lamD, eqndD, dlamD, annD, natD, triD, diamondD,
|
||||||
eqD, colonD, commaD, semiD, caseD, typecaseD, returnD,
|
eqD, colonD, commaD, semiD, caseD, typecaseD, returnD, ofD, dotD, zeroD, succD,
|
||||||
ofD, dotD, zeroD, succD, coeD, compD, undD, cstD, pipeD :
|
coeD, compD, undD, cstD, pipeD :
|
||||||
{opts : _} -> Eff Pretty (Doc opts)
|
{opts : LayoutOpts} -> Eff Pretty (Doc opts)
|
||||||
typeD = hl Syntax . text =<< ifUnicode "★" "Type"
|
typeD = hl Syntax . text =<< ifUnicode "★" "Type"
|
||||||
arrowD = hl Delim . text =<< ifUnicode "→" "->"
|
arrowD = hl Delim . text =<< ifUnicode "→" "->"
|
||||||
darrowD = hl Delim . text =<< ifUnicode "⇒" "=>"
|
darrowD = hl Delim . text =<< ifUnicode "⇒" "=>"
|
||||||
|
@ -242,6 +246,8 @@ eqndD = hl Delim . text =<< ifUnicode "≡" "=="
|
||||||
dlamD = hl Syntax . text =<< ifUnicode "δ" "dfun"
|
dlamD = hl Syntax . text =<< ifUnicode "δ" "dfun"
|
||||||
annD = hl Delim . text =<< ifUnicode "∷" "::"
|
annD = hl Delim . text =<< ifUnicode "∷" "::"
|
||||||
natD = hl Syntax . text =<< ifUnicode "ℕ" "Nat"
|
natD = hl Syntax . text =<< ifUnicode "ℕ" "Nat"
|
||||||
|
triD = hl Syntax . text =<< ifUnicode "⊲" "<|"
|
||||||
|
diamondD = hl Syntax . text =<< ifUnicode "⋄" "<>"
|
||||||
eqD = hl Syntax $ text "Eq"
|
eqD = hl Syntax $ text "Eq"
|
||||||
colonD = hl Delim $ text ":"
|
colonD = hl Delim $ text ":"
|
||||||
commaD = hl Delim $ text ","
|
commaD = hl Delim $ text ","
|
||||||
|
|
|
@ -78,6 +78,12 @@ isPairHead (Ann (Pair {}) (Sig {}) _) = True
|
||||||
isPairHead (Coe {}) = True
|
isPairHead (Coe {}) = True
|
||||||
isPairHead _ = False
|
isPairHead _ = False
|
||||||
|
|
||||||
|
public export %inline
|
||||||
|
isWHead : Elim {} -> Bool
|
||||||
|
isWHead (Ann (Sup {}) (W {}) _) = True
|
||||||
|
isWHead (Coe {}) = True
|
||||||
|
isWHead _ = False
|
||||||
|
|
||||||
public export %inline
|
public export %inline
|
||||||
isTagHead : Elim {} -> Bool
|
isTagHead : Elim {} -> Bool
|
||||||
isTagHead (Ann (Tag {}) (Enum {}) _) = True
|
isTagHead (Ann (Tag {}) (Enum {}) _) = True
|
||||||
|
@ -113,6 +119,8 @@ isTyCon : Term {} -> Bool
|
||||||
isTyCon (TYPE {}) = True
|
isTyCon (TYPE {}) = True
|
||||||
isTyCon (Pi {}) = True
|
isTyCon (Pi {}) = True
|
||||||
isTyCon (Lam {}) = False
|
isTyCon (Lam {}) = False
|
||||||
|
isTyCon (W {}) = True
|
||||||
|
isTyCon (Sup {}) = False
|
||||||
isTyCon (Sig {}) = True
|
isTyCon (Sig {}) = True
|
||||||
isTyCon (Pair {}) = False
|
isTyCon (Pair {}) = False
|
||||||
isTyCon (Enum {}) = True
|
isTyCon (Enum {}) = True
|
||||||
|
@ -155,6 +163,8 @@ mutual
|
||||||
isRedexE defs fun || isLamHead fun
|
isRedexE defs fun || isLamHead fun
|
||||||
isRedexE defs (CasePair {pair, _}) =
|
isRedexE defs (CasePair {pair, _}) =
|
||||||
isRedexE defs pair || isPairHead pair
|
isRedexE defs pair || isPairHead pair
|
||||||
|
isRedexE defs (CaseW {tree, _}) =
|
||||||
|
isRedexE defs tree || isWHead tree
|
||||||
isRedexE defs (CaseEnum {tag, _}) =
|
isRedexE defs (CaseEnum {tag, _}) =
|
||||||
isRedexE defs tag || isTagHead tag
|
isRedexE defs tag || isTagHead tag
|
||||||
isRedexE defs (CaseNat {nat, _}) =
|
isRedexE defs (CaseNat {nat, _}) =
|
||||||
|
@ -204,16 +214,36 @@ tycaseRhsDef0 : Term d n -> (k : TyConKind) -> TypeCaseArms d n ->
|
||||||
tycaseRhsDef0 def k arms = fromMaybe def $ tycaseRhs0 k arms
|
tycaseRhsDef0 def k arms = fromMaybe def $ tycaseRhs0 k arms
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
weakAtT : CanTSubst f => (by, at : Nat) ->
|
||||||
|
f d (at + n) -> f d (at + (by + n))
|
||||||
|
weakAtT by at t = t `CanTSubst.(//)` pushN at (shift by)
|
||||||
|
|
||||||
private
|
export
|
||||||
weakDS : (by : Nat) -> DScopeTerm d n -> DScopeTerm d (by + n)
|
weakAtD : CanDSubst f => (by, at : Nat) ->
|
||||||
weakDS by (S names (Y body)) = S names $ Y $ weakT by body
|
f (at + d) n -> f (at + (by + d)) n
|
||||||
weakDS by (S names (N body)) = S names $ N $ weakT by body
|
weakAtD by at t = t `CanDSubst.(//)` pushN at (shift by)
|
||||||
|
|
||||||
private
|
parameters {s : Nat}
|
||||||
dweakS : (by : Nat) -> ScopeTerm d n -> ScopeTerm (by + d) n
|
export
|
||||||
dweakS by (S names (Y body)) = S names $ Y $ dweakT by body
|
weakS : (by : Nat) -> ScopeTermN s d n -> ScopeTermN s d (by + n)
|
||||||
dweakS by (S names (N body)) = S names $ N $ dweakT by body
|
weakS by (S names (Y body)) = S names $ Y $ weakAtT by s body
|
||||||
|
weakS by (S names (N body)) = S names $ N $ weakT by body
|
||||||
|
|
||||||
|
export
|
||||||
|
weakDS : (by : Nat) -> DScopeTermN s d n -> DScopeTermN s d (by + n)
|
||||||
|
weakDS by (S names (Y body)) = S names $ Y $ weakT by body
|
||||||
|
weakDS by (S names (N body)) = S names $ N $ weakT by body
|
||||||
|
|
||||||
|
export
|
||||||
|
dweakS : (by : Nat) -> ScopeTermN s d n -> ScopeTermN s (by + d) n
|
||||||
|
dweakS by (S names (Y body)) = S names $ Y $ dweakT by body
|
||||||
|
dweakS by (S names (N body)) = S names $ N $ dweakT by body
|
||||||
|
|
||||||
|
export
|
||||||
|
dweakDS : (by : Nat) -> DScopeTermN s d n -> DScopeTermN s (by + d) n
|
||||||
|
dweakDS by (S names (Y body)) = S names $ Y $ weakAtD by s body
|
||||||
|
dweakDS by (S names (N body)) = S names $ N $ dweakT by body
|
||||||
|
|
||||||
private
|
private
|
||||||
coeScoped : {s : Nat} -> DScopeTerm d n -> Dim d -> Dim d -> Loc ->
|
coeScoped : {s : Nat} -> DScopeTerm d n -> Dim d -> Dim d -> Loc ->
|
||||||
|
@ -246,6 +276,7 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
||||||
| t => throw $ ExpectedPi loc ctx.names t
|
| t => throw $ ExpectedPi loc ctx.names t
|
||||||
pure $ sub1 res $ Ann s arg loc
|
pure $ sub1 res $ Ann s arg loc
|
||||||
computeElimType (CasePair {pair, ret, _}) = pure $ sub1 ret pair
|
computeElimType (CasePair {pair, ret, _}) = pure $ sub1 ret pair
|
||||||
|
computeElimType (CaseW {tree, ret, _}) = pure $ sub1 ret tree
|
||||||
computeElimType (CaseEnum {tag, ret, _}) = pure $ sub1 ret tag
|
computeElimType (CaseEnum {tag, ret, _}) = pure $ sub1 ret tag
|
||||||
computeElimType (CaseNat {nat, ret, _}) = pure $ sub1 ret nat
|
computeElimType (CaseNat {nat, ret, _}) = pure $ sub1 ret nat
|
||||||
computeElimType (CaseBox {box, ret, _}) = pure $ sub1 ret box
|
computeElimType (CaseBox {box, ret, _}) = pure $ sub1 ret box
|
||||||
|
@ -269,7 +300,7 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n)
|
||||||
tycasePi (E e) {tnf} = do
|
tycasePi (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
||||||
let loc = e.loc
|
let loc = e.loc
|
||||||
narg = mnb "Arg"; nret = mnb "Ret"
|
narg = mnb "Arg" loc; nret = mnb "Ret" loc
|
||||||
arg = E $ typeCase1Y e ty KPi [< !narg, !nret] (BVT 1 loc) loc
|
arg = E $ typeCase1Y e ty KPi [< !narg, !nret] (BVT 1 loc) loc
|
||||||
res' = typeCase1Y e (Arr Zero arg ty loc) KPi [< !narg, !nret]
|
res' = typeCase1Y e (Arr Zero arg ty loc) KPi [< !narg, !nret]
|
||||||
(BVT 0 loc) loc
|
(BVT 0 loc) loc
|
||||||
|
@ -287,7 +318,7 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n)
|
||||||
tycaseSig (E e) {tnf} = do
|
tycaseSig (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
||||||
let loc = e.loc
|
let loc = e.loc
|
||||||
nfst = mnb "Fst"; nsnd = mnb "Snd"
|
nfst = mnb "Fst" loc; nsnd = mnb "Snd" loc
|
||||||
fst = E $ typeCase1Y e ty KSig [< !nfst, !nsnd] (BVT 1 loc) loc
|
fst = E $ typeCase1Y e ty KSig [< !nfst, !nsnd] (BVT 1 loc) loc
|
||||||
snd' = typeCase1Y e (Arr Zero fst ty loc) KSig [< !nfst, !nsnd]
|
snd' = typeCase1Y e (Arr Zero fst ty loc) KSig [< !nfst, !nsnd]
|
||||||
(BVT 0 loc) loc
|
(BVT 0 loc) loc
|
||||||
|
@ -295,6 +326,24 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n)
|
||||||
pure (fst, snd)
|
pure (fst, snd)
|
||||||
tycaseSig t = throw $ ExpectedSig t.loc ctx.names t
|
tycaseSig t = throw $ ExpectedSig t.loc ctx.names t
|
||||||
|
|
||||||
|
||| for (x : A) ⊲ B, returns (A, B);
|
||||||
|
||| for an elim returns a pair of type-cases that will reduce to that;
|
||||||
|
||| for other intro forms error
|
||||||
|
private covering
|
||||||
|
tycaseW : (t : Term (S d) n) -> (0 tnf : No (isRedexT defs t)) =>
|
||||||
|
Eff Whnf (Term (S d) n, ScopeTerm (S d) n)
|
||||||
|
tycaseW (W {shape, body, _}) = pure (shape, body)
|
||||||
|
tycaseW (E e) {tnf} = do
|
||||||
|
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
||||||
|
let loc = e.loc
|
||||||
|
nshape = mnb "Shape" loc; nbody = mnb "Body" loc
|
||||||
|
shape = E $ typeCase1Y e ty KW [< !nshape, !nbody] (BVT 1 loc) loc
|
||||||
|
body' = typeCase1Y e (Arr Zero shape ty loc) KW [< !nshape, !nbody]
|
||||||
|
(BVT 0 loc) loc
|
||||||
|
body = ST [< !nshape] $ E $ App (weakE 1 body') (BVT 0 loc) loc
|
||||||
|
pure (shape, body)
|
||||||
|
tycaseW t = throw $ ExpectedW t.loc ctx.names t
|
||||||
|
|
||||||
||| for [π. A], returns A;
|
||| for [π. A], returns A;
|
||||||
||| for an elim returns a type-case that will reduce to that;
|
||| for an elim returns a type-case that will reduce to that;
|
||||||
||| for other intro forms error
|
||| for other intro forms error
|
||||||
|
@ -303,8 +352,9 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n)
|
||||||
Eff Whnf (Term (S d) n)
|
Eff Whnf (Term (S d) n)
|
||||||
tycaseBOX (BOX {ty, _}) = pure ty
|
tycaseBOX (BOX {ty, _}) = pure ty
|
||||||
tycaseBOX (E e) {tnf} = do
|
tycaseBOX (E e) {tnf} = do
|
||||||
|
let loc = e.loc
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
||||||
pure $ E $ typeCase1Y e ty KBOX [< !(mnb "Ty")] (BVT 0 e.loc) e.loc
|
pure $ E $ typeCase1Y e ty KBOX [< !(mnb "Ty" loc)] (BVT 0 loc) loc
|
||||||
tycaseBOX t = throw $ ExpectedBOX t.loc ctx.names t
|
tycaseBOX t = throw $ ExpectedBOX t.loc ctx.names t
|
||||||
|
|
||||||
||| for Eq [i ⇒ A] l r, returns (A‹0/i›, A‹1/i›, A, l, r);
|
||| for Eq [i ⇒ A] l r, returns (A‹0/i›, A‹1/i›, A, l, r);
|
||||||
|
@ -318,11 +368,11 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext (S d) n)
|
||||||
tycaseEq (E e) {tnf} = do
|
tycaseEq (E e) {tnf} = do
|
||||||
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
ty <- computeElimType defs ctx e @{noOr2 tnf}
|
||||||
let loc = e.loc
|
let loc = e.loc
|
||||||
names = traverse' (\x => mnb x) [< "A0", "A1", "A", "L", "R"]
|
names = traverse' (\x => mnb x loc) [< "A0", "A1", "A", "l", "r"]
|
||||||
a0 = E $ typeCase1Y e ty KEq !names (BVT 4 loc) loc
|
a0 = E $ typeCase1Y e ty KEq !names (BVT 4 loc) loc
|
||||||
a1 = E $ typeCase1Y e ty KEq !names (BVT 3 loc) loc
|
a1 = E $ typeCase1Y e ty KEq !names (BVT 3 loc) loc
|
||||||
a' = typeCase1Y e (Eq0 ty a0 a1 loc) KEq !names (BVT 2 loc) loc
|
a' = typeCase1Y e (Eq0 ty a0 a1 loc) KEq !names (BVT 2 loc) loc
|
||||||
a = DST [< !(mnb "i")] $ E $ DApp (dweakE 1 a') (B VZ loc) loc
|
a = DST [< !(mnb "i" loc)] $ E $ DApp (dweakE 1 a') (B VZ loc) loc
|
||||||
l = E $ typeCase1Y e a0 KEq !names (BVT 1 loc) loc
|
l = E $ typeCase1Y e a0 KEq !names (BVT 1 loc) loc
|
||||||
r = E $ typeCase1Y e a1 KEq !names (BVT 0 loc) loc
|
r = E $ typeCase1Y e a1 KEq !names (BVT 0 loc) loc
|
||||||
pure (a0, a1, a, l, r)
|
pure (a0, a1, a, l, r)
|
||||||
|
@ -337,9 +387,12 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
||||||
(val, s : Term d n) -> Loc ->
|
(val, s : Term d n) -> Loc ->
|
||||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs))
|
Eff Whnf (Subset (Elim d n) (No . isRedexE defs))
|
||||||
piCoe sty@(S [< i] ty) p q val s loc = do
|
piCoe sty@(S [< i] ty) p q val s loc = do
|
||||||
-- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝
|
-- 𝒮‹𝑘› ≔ π.(x : A‹𝑘/𝑖›) → B‹𝑘/𝑖›
|
||||||
-- coe [i ⇒ B[𝒔‹i›/x] @p @q ((t ∷ (π.(x : A) → B)‹p/i›) 𝒔‹p›)
|
-- 𝓈‹𝑘› ≔ coe [𝑖 ⇒ A] @q @𝑘 s
|
||||||
-- where 𝒔‹j› ≔ coe [i ⇒ A] @q @j s
|
-- -------------------------------------------------------
|
||||||
|
-- (coe [𝑖 ⇒ 𝒮‹𝑖›] @p @q t) s
|
||||||
|
-- ⇝
|
||||||
|
-- coe [i ⇒ B[𝓈‹i›/x] @p @q ((t ∷ 𝒮‹p›) 𝓈‹p›)
|
||||||
--
|
--
|
||||||
-- type-case is used to expose A,B if the type is neutral
|
-- type-case is used to expose A,B if the type is neutral
|
||||||
let ctx1 = extendDim i ctx
|
let ctx1 = extendDim i ctx
|
||||||
|
@ -358,11 +411,11 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
||||||
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc ->
|
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) -> Loc ->
|
||||||
Eff Whnf (Subset (Elim d n) (No . isRedexE defs))
|
Eff Whnf (Subset (Elim d n) (No . isRedexE defs))
|
||||||
sigCoe qty sty@(S [< i] ty) p q val ret body loc = do
|
sigCoe qty sty@(S [< i] ty) p q val ret body loc = do
|
||||||
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e }
|
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ u }
|
||||||
-- ⇝
|
-- ⇝
|
||||||
-- caseπ s ∷ ((x : A) × B)‹p/i› return z ⇒ C
|
-- caseπ s ∷ ((x : A) × B)‹p/i› return z ⇒ C
|
||||||
-- of { (a, b) ⇒
|
-- of { (a, b) ⇒
|
||||||
-- e[(coe [i ⇒ A] @p @q a)/a,
|
-- u[(coe [i ⇒ A] @p @q a)/a,
|
||||||
-- (coe [i ⇒ B[(coe [j ⇒ A‹j/i›] @p @i a)/x]] @p @q b)/b] }
|
-- (coe [i ⇒ B[(coe [j ⇒ A‹j/i›] @p @i a)/x]] @p @q b)/b] }
|
||||||
--
|
--
|
||||||
-- type-case is used to expose A,B if the type is neutral
|
-- type-case is used to expose A,B if the type is neutral
|
||||||
|
@ -370,14 +423,58 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf defs ctx1 ty.term
|
||||||
(tfst, tsnd) <- tycaseSig defs ctx1 ty
|
(tfst, tsnd) <- tycaseSig defs ctx1 ty
|
||||||
let [< x, y] = body.names
|
let [< x, y] = body.names
|
||||||
a' = CoeT i (weakT 2 tfst) p q (BVT 1 noLoc) x.loc
|
a' = CoeT i (weakT 2 tfst) p q (BVT 1 x.loc) x.loc
|
||||||
tsnd' = tsnd.term //
|
tsnd' = tsnd.term //
|
||||||
(CoeT i (weakT 2 $ tfst // (B VZ noLoc ::: shift 2))
|
(CoeT !(fresh i) (weakT 2 $ tfst // (B VZ i.loc ::: shift 2))
|
||||||
(weakD 1 p) (B VZ noLoc) (BVT 1 noLoc) y.loc ::: shift 2)
|
(weakD 1 p) (B VZ i.loc) (BVT 1 x.loc) y.loc ::: shift 2)
|
||||||
b' = CoeT i tsnd' p q (BVT 0 noLoc) y.loc
|
b' = CoeT i tsnd' p q (BVT 0 y.loc) y.loc
|
||||||
whnf defs ctx $ CasePair qty (Ann val (ty // one p) val.loc) ret
|
whnf defs ctx $ CasePair qty (Ann val (dsub1 sty p) val.loc) ret
|
||||||
(ST body.names $ body.term // (a' ::: b' ::: shift 2)) loc
|
(ST body.names $ body.term // (a' ::: b' ::: shift 2)) loc
|
||||||
|
|
||||||
|
||| reduce a w elimination `CaseW pi piIH (Coe ty p q val) ret body loc`
|
||||||
|
private covering
|
||||||
|
wCoe : (qty, qtyIH : Qty) ->
|
||||||
|
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||||
|
(ret : ScopeTerm d n) -> (body : ScopeTermN 3 d n) -> Loc ->
|
||||||
|
Eff Whnf (Subset (Elim d n) (No . isRedexE defs))
|
||||||
|
wCoe qty qtyIH sty@(S [< i] ty) p q val ret body loc = do
|
||||||
|
-- 𝒮‹𝑘› ≔ ((x : A) ⊲ B)‹𝑘/𝑖›
|
||||||
|
-- 𝒶‹𝑘› ≔ coe [𝑖 ⇒ A] @p @𝑘 a
|
||||||
|
-- : A‹𝑘/𝑖›
|
||||||
|
-- 𝒷‹𝑘› ≔ coe [𝑖 ⇒ 1.B[𝒶‹𝑖›/x] → 𝒮‹𝑖›] @p @𝑘 b
|
||||||
|
-- : 1.B‹𝑘/𝑖›[𝒶‹𝑘›/x] → 𝒮‹𝑘›
|
||||||
|
-- 𝒾𝒽 ≔ coe [𝑖 ⇒ π.(z : B[𝒶‹𝑖›/x]) → C[𝒷‹𝑖› z/p]] @p @q ih
|
||||||
|
-- : π.(z : B‹q/𝑖›[𝒶‹q›/x]) → C[𝒷‹q› z/p]
|
||||||
|
-- --------------------------------------------------------------------
|
||||||
|
-- caseπ (coe [𝑖 ⇒ 𝒮‹𝑖›] @p @q s) return z ⇒ C of { a ⋄ b, ς.ih ⇒ u }
|
||||||
|
-- ⇝
|
||||||
|
-- caseπ s ∷ 𝒮‹p› return z ⇒ C
|
||||||
|
-- of { a ⋄ b, ς.ih ⇒ u[𝒶‹q›/a, 𝒷‹q›/b, 𝒾𝒽/ih] }
|
||||||
|
let ctx1 = extendDim i ctx
|
||||||
|
Element ty tynf <- whnf defs ctx1 ty.term
|
||||||
|
(shape, tbody) <- tycaseW defs ctx1 ty
|
||||||
|
let [< a, b, ih] = body.names
|
||||||
|
ai <- fresh i; bi <- fresh i; ihi <- fresh i; z <- mnb "z" ih.loc
|
||||||
|
let a', b' : forall d'. (by : Shift d d') => Dim d' -> Elim d' (3 + n)
|
||||||
|
a' k =
|
||||||
|
let shape' = shape // Shift (weak 1 by) // shift 3 in
|
||||||
|
CoeT ai shape' (p // by) k (BVT 2 a.loc) a.loc
|
||||||
|
b' k =
|
||||||
|
let tbody' = tbody.term // Shift (weak 1 by)
|
||||||
|
// (a' (BV 0 bi.loc) ::: shift 3)
|
||||||
|
ty' = ty // Shift (weak 1 by) // shift 3
|
||||||
|
in
|
||||||
|
CoeT bi (Arr One tbody' ty' b.loc) (p // by) k (BVT 1 b.loc) b.loc
|
||||||
|
ih' : Elim d (3 + n) :=
|
||||||
|
let tbody' = tbody.term // (a' (BV 0 ihi.loc) ::: shift 3)
|
||||||
|
ret' = sub1 (weakS 4 $ dweakS 1 ret) $
|
||||||
|
App (weakE 1 $ b' (BV 0 ihi.loc)) (BVT 0 z.loc) ih.loc
|
||||||
|
ty = PiY qty z tbody' ret' ih.loc
|
||||||
|
in
|
||||||
|
CoeT ihi ty p q (BVT 0 ih.loc) ih.loc
|
||||||
|
whnf defs ctx $ CaseW qty qtyIH (Ann val (dsub1 sty p) val.loc) ret
|
||||||
|
(ST body.names $ body.term // (a' q ::: b' q ::: ih' ::: shift 3)) loc
|
||||||
|
|
||||||
||| reduce a dimension application `DApp (Coe ty p q val) r loc`
|
||| reduce a dimension application `DApp (Coe ty p q val) r loc`
|
||||||
private covering
|
private covering
|
||||||
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
|
||||||
|
@ -392,7 +489,7 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf defs ctx1 ty.term
|
||||||
(a0, a1, a, s, t) <- tycaseEq defs ctx1 ty
|
(a0, a1, a, s, t) <- tycaseEq defs ctx1 ty
|
||||||
let a' = dsub1 a (weakD 1 r)
|
let a' = dsub1 a (weakD 1 r)
|
||||||
val' = E $ DApp (Ann val (ty // one p) val.loc) r loc
|
val' = E $ DApp (Ann val (dsub1 sty p) val.loc) r loc
|
||||||
whnf defs ctx $ CompH j a' p q val' r j s j t loc
|
whnf defs ctx $ CompH j a' p q val' r j s j t loc
|
||||||
|
|
||||||
||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body`
|
||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body`
|
||||||
|
@ -409,8 +506,8 @@ parameters {d, n : Nat} (defs : Definitions) (ctx : WhnfContext d n)
|
||||||
let ctx1 = extendDim i ctx
|
let ctx1 = extendDim i ctx
|
||||||
Element ty tynf <- whnf defs ctx1 ty.term
|
Element ty tynf <- whnf defs ctx1 ty.term
|
||||||
ta <- tycaseBOX defs ctx1 ty
|
ta <- tycaseBOX defs ctx1 ty
|
||||||
let a' = CoeT i (weakT 1 ta) p q (BVT 0 noLoc) body.name.loc
|
let a' = CoeT i (weakT 1 ta) p q (BVT 0 body.name.loc) body.name.loc
|
||||||
whnf defs ctx $ CaseBox qty (Ann val (ty // one p) val.loc) ret
|
whnf defs ctx $ CaseBox qty (Ann val (dsub1 sty p) val.loc) ret
|
||||||
(ST body.names $ body.term // (a' ::: shift 1)) loc
|
(ST body.names $ body.term // (a' ::: shift 1)) loc
|
||||||
|
|
||||||
|
|
||||||
|
@ -429,19 +526,29 @@ reduceTypeCase defs ctx ty u ret arms def loc = case ty of
|
||||||
-- (type-case π.(x : A) → B ∷ ★ᵢ return Q of { (a → b) ⇒ s; ⋯ }) ⇝
|
-- (type-case π.(x : A) → B ∷ ★ᵢ return Q of { (a → b) ⇒ s; ⋯ }) ⇝
|
||||||
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q
|
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q
|
||||||
Pi {arg, res, loc = piLoc, _} =>
|
Pi {arg, res, loc = piLoc, _} =>
|
||||||
let arg' = Ann arg (TYPE u noLoc) arg.loc
|
let arg' = Ann arg (TYPE u arg.loc) arg.loc
|
||||||
res' = Ann (Lam res res.loc)
|
res' = Ann (Lam res res.loc)
|
||||||
(Arr Zero arg (TYPE u noLoc) arg.loc) res.loc
|
(Arr Zero arg (TYPE u arg.loc) arg.loc) res.loc
|
||||||
in
|
in
|
||||||
whnf defs ctx $
|
whnf defs ctx $
|
||||||
Ann (subN (tycaseRhsDef def KPi arms) [< arg', res']) ret loc
|
Ann (subN (tycaseRhsDef def KPi arms) [< arg', res']) ret loc
|
||||||
|
|
||||||
|
-- (type-case (x : A) ⊲ π.B ∷ ★ᵢ return Q of { (a ⊲ b) ⇒ s; ⋯ }) ⇝
|
||||||
|
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q
|
||||||
|
W {shape, body, loc = wLoc, _} =>
|
||||||
|
let shape' = Ann shape (TYPE u shape.loc) shape.loc
|
||||||
|
body' = Ann (Lam body body.loc)
|
||||||
|
(Arr Zero shape (TYPE u shape.loc) shape.loc) body.loc
|
||||||
|
in
|
||||||
|
whnf defs ctx $
|
||||||
|
Ann (subN (tycaseRhsDef def KW arms) [< shape', body']) ret loc
|
||||||
|
|
||||||
-- (type-case (x : A) × B ∷ ★ᵢ return Q of { (a × b) ⇒ s; ⋯ }) ⇝
|
-- (type-case (x : A) × B ∷ ★ᵢ return Q of { (a × b) ⇒ s; ⋯ }) ⇝
|
||||||
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q
|
-- s[(A ∷ ★ᵢ)/a, ((λ x ⇒ B) ∷ 0.A → ★ᵢ)/b] ∷ Q
|
||||||
Sig {fst, snd, loc = sigLoc, _} =>
|
Sig {fst, snd, loc = sigLoc, _} =>
|
||||||
let fst' = Ann fst (TYPE u noLoc) fst.loc
|
let fst' = Ann fst (TYPE u fst.loc) fst.loc
|
||||||
snd' = Ann (Lam snd snd.loc)
|
snd' = Ann (Lam snd snd.loc)
|
||||||
(Arr Zero fst (TYPE u noLoc) fst.loc) snd.loc
|
(Arr Zero fst (TYPE u fst.loc) fst.loc) snd.loc
|
||||||
in
|
in
|
||||||
whnf defs ctx $
|
whnf defs ctx $
|
||||||
Ann (subN (tycaseRhsDef def KSig arms) [< fst', snd']) ret loc
|
Ann (subN (tycaseRhsDef def KSig arms) [< fst', snd']) ret loc
|
||||||
|
@ -459,8 +566,8 @@ reduceTypeCase defs ctx ty u ret arms def loc = case ty of
|
||||||
let a0 = a.zero; a1 = a.one in
|
let a0 = a.zero; a1 = a.one in
|
||||||
whnf defs ctx $ Ann
|
whnf defs ctx $ Ann
|
||||||
(subN (tycaseRhsDef def KEq arms)
|
(subN (tycaseRhsDef def KEq arms)
|
||||||
[< Ann a0 (TYPE u noLoc) a.loc, Ann a1 (TYPE u noLoc) a.loc,
|
[< Ann a0 (TYPE u a.loc) a.loc, Ann a1 (TYPE u a.loc) a.loc,
|
||||||
Ann (DLam a a.loc) (Eq0 (TYPE u noLoc) a0 a1 a.loc) a.loc,
|
Ann (DLam a a.loc) (Eq0 (TYPE u a.loc) a0 a1 a.loc) a.loc,
|
||||||
Ann l a0 l.loc, Ann r a1 r.loc])
|
Ann l a0 l.loc, Ann r a1 r.loc])
|
||||||
ret loc
|
ret loc
|
||||||
|
|
||||||
|
@ -471,7 +578,7 @@ reduceTypeCase defs ctx ty u ret arms def loc = case ty of
|
||||||
-- (type-case [π.A] ∷ ★ᵢ return Q of { [a] ⇒ s; ⋯ }) ⇝ s[(A ∷ ★ᵢ)/a] ∷ Q
|
-- (type-case [π.A] ∷ ★ᵢ return Q of { [a] ⇒ s; ⋯ }) ⇝ s[(A ∷ ★ᵢ)/a] ∷ Q
|
||||||
BOX {ty = a, loc = boxLoc, _} =>
|
BOX {ty = a, loc = boxLoc, _} =>
|
||||||
whnf defs ctx $ Ann
|
whnf defs ctx $ Ann
|
||||||
(sub1 (tycaseRhsDef def KBOX arms) (Ann a (TYPE u noLoc) a.loc))
|
(sub1 (tycaseRhsDef def KBOX arms) (Ann a (TYPE u a.loc) a.loc))
|
||||||
ret loc
|
ret loc
|
||||||
|
|
||||||
|
|
||||||
|
@ -489,6 +596,7 @@ pushCoe defs ctx i ty p q s loc =
|
||||||
-- (coe [_ ⇒ ★ᵢ] @_ @_ ty) ⇝ (ty ∷ ★ᵢ)
|
-- (coe [_ ⇒ ★ᵢ] @_ @_ ty) ⇝ (ty ∷ ★ᵢ)
|
||||||
TYPE {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
TYPE {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
||||||
Pi {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
Pi {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
||||||
|
W {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
||||||
Sig {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
Sig {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
||||||
Enum {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
Enum {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
||||||
Eq {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
Eq {} => pure $ nred $ Ann s (TYPE !(unwrapTYPE ty) ty.loc) loc
|
||||||
|
@ -503,7 +611,7 @@ pushCoe defs ctx i ty p q s loc =
|
||||||
lam@(Lam {body, _}) => do
|
lam@(Lam {body, _}) => do
|
||||||
let lam' = CoeT i ty p q lam loc
|
let lam' = CoeT i ty p q lam loc
|
||||||
term' = LamY !(fresh body.name)
|
term' = LamY !(fresh body.name)
|
||||||
(E $ App (weakE 1 lam') (BVT 0 noLoc) loc) loc
|
(E $ App (weakE 1 lam') (BVT 0 loc) loc) loc
|
||||||
type' = ty // one q
|
type' = ty // one q
|
||||||
whnf defs ctx $ Ann term' type' loc
|
whnf defs ctx $ Ann term' type' loc
|
||||||
|
|
||||||
|
@ -517,23 +625,40 @@ pushCoe defs ctx i ty p q s loc =
|
||||||
let Sig {fst = tfst, snd = tsnd, loc = sigLoc} = ty
|
let Sig {fst = tfst, snd = tsnd, loc = sigLoc} = ty
|
||||||
| _ => throw $ ExpectedSig ty.loc (extendDim i ctx.names) ty
|
| _ => throw $ ExpectedSig ty.loc (extendDim i ctx.names) ty
|
||||||
let fst' = E $ CoeT i tfst p q fst fst.loc
|
let fst' = E $ CoeT i tfst p q fst fst.loc
|
||||||
tfst' = tfst // (B VZ noLoc ::: shift 2)
|
tfst' = tfst // (B VZ i.loc ::: shift 2)
|
||||||
tsnd' = sub1 tsnd $
|
tsnd' = sub1 tsnd $
|
||||||
CoeT !(fresh i) tfst' (weakD 1 p) (B VZ noLoc)
|
CoeT !(fresh i) tfst' (weakD 1 p) (B VZ snd.loc)
|
||||||
(dweakT 1 fst) fst.loc
|
(dweakT 1 fst) snd.loc
|
||||||
snd' = E $ CoeT i tsnd' p q snd snd.loc
|
snd' = E $ CoeT i tsnd' p q snd snd.loc
|
||||||
pure $
|
pure $
|
||||||
Element (Ann (Pair fst' snd' pairLoc)
|
Element (Ann (Pair fst' snd' pairLoc)
|
||||||
(Sig (tfst // one q) (tsnd // one q) sigLoc) loc) Ah
|
(Sig (tfst // one q) (tsnd // one q) sigLoc) loc) Ah
|
||||||
|
|
||||||
|
-- (coe [i ⇒ (x : A) ⊲ π.B] @p @q (s ⋄ t) ⇝
|
||||||
|
-- (coe [i ⇒ A] @p @q s ⋄
|
||||||
|
-- coe [i ⇒ 1.B[coe [j ⇒ A‹j/i›] @p @i s/x] → (x : A) ⊲ B] t)
|
||||||
|
-- ∷ ((x : A) ⊲ B)‹q/i›
|
||||||
|
Sup {root, sub, loc = supLoc} => do
|
||||||
|
let W {shape, body, loc = wLoc} = ty
|
||||||
|
| _ => throw $ ExpectedW ty.loc (extendDim i ctx.names) ty
|
||||||
|
let root' = E $ CoeT i shape p q root root.loc
|
||||||
|
tsub' = sub1 body $
|
||||||
|
CoeT !(fresh i) (shape // (B VZ root.loc ::: shift 2))
|
||||||
|
(weakD 1 p) (BV 0 sub.loc)
|
||||||
|
(dweakT 1 sub) sub.loc
|
||||||
|
sub' = E $ CoeT i tsub' p q sub sub.loc
|
||||||
|
pure $
|
||||||
|
Element (Ann (Sup root' sub' supLoc)
|
||||||
|
(W (shape // one q) (body // one q) wLoc) loc) Ah
|
||||||
|
|
||||||
-- η expand, like for Lam
|
-- η expand, like for Lam
|
||||||
--
|
--
|
||||||
-- (coe [i ⇒ A] @p @q (δ j ⇒ s)) ⇝
|
-- (coe [i ⇒ A] @p @q (δ j ⇒ s)) ⇝
|
||||||
-- (δ k ⇒ (coe [i ⇒ A] @p @q (δ j ⇒ s)) @k) ∷ A‹q/i› ⇝ ⋯
|
-- (δ k ⇒ (coe [i ⇒ A] @p @q (δ j ⇒ s)) @k) ∷ A‹q/i› ⇝ ⋯
|
||||||
dlam@(DLam {body, _}) => do
|
dlam@(DLam {body, _}) => do
|
||||||
let dlam' = CoeT i ty p q dlam loc
|
let dlam' = CoeT i ty p q dlam loc
|
||||||
term' = DLamY !(mnb "j")
|
term' = DLamY !(mnb "j" loc)
|
||||||
(E $ DApp (dweakE 1 dlam') (B VZ noLoc) loc) loc
|
(E $ DApp (dweakE 1 dlam') (B VZ loc) loc) loc
|
||||||
type' = ty // one q
|
type' = ty // one q
|
||||||
whnf defs ctx $ Ann term' type' loc
|
whnf defs ctx $ Ann term' type' loc
|
||||||
|
|
||||||
|
@ -585,8 +710,12 @@ CanWhnf Elim Reduce.isRedexE where
|
||||||
Coe ty p q val _ => piCoe defs ctx ty p q val s appLoc
|
Coe ty p q val _ => piCoe defs ctx ty p q val s appLoc
|
||||||
Right nlh => pure $ Element (App f s appLoc) $ fnf `orNo` nlh
|
Right nlh => pure $ Element (App f s appLoc) $ fnf `orNo` nlh
|
||||||
|
|
||||||
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
|
-- s' ≔ s ∷ A
|
||||||
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
|
-- t' ≔ t ∷ B[s'/x]
|
||||||
|
-- st' ≔ (s, t) ∷ (x : A) × B
|
||||||
|
-- C' ≔ C[st'/p]
|
||||||
|
-- ---------------------------------------------------------------
|
||||||
|
-- case st' return p ⇒ C of { (a, b) ⇒ u } ⇝ u[s'/a, t'/x]] ∷ C'
|
||||||
whnf defs ctx (CasePair pi pair ret body caseLoc) = do
|
whnf defs ctx (CasePair pi pair ret body caseLoc) = do
|
||||||
Element pair pairnf <- whnf defs ctx pair
|
Element pair pairnf <- whnf defs ctx pair
|
||||||
case nchoose $ isPairHead pair of
|
case nchoose $ isPairHead pair of
|
||||||
|
@ -601,6 +730,43 @@ CanWhnf Elim Reduce.isRedexE where
|
||||||
Right np =>
|
Right np =>
|
||||||
pure $ Element (CasePair pi pair ret body caseLoc) $ pairnf `orNo` np
|
pure $ Element (CasePair pi pair ret body caseLoc) $ pairnf `orNo` np
|
||||||
|
|
||||||
|
-- s' ≔ s ∷ A
|
||||||
|
-- t' ≔ t ∷ 1.B[s'/x] → (x : A) ⊲ B
|
||||||
|
-- ih' ≔ (λ x ⇒ caseπ t x return p ⇒ C of { (a ⋄ b), ς.ih ⇒ u }) ∷
|
||||||
|
-- π.(y : B[s'/x]) → C[t' y/p]
|
||||||
|
-- st' ≔ s ⋄ t ∷ (x : A) ⊲ B
|
||||||
|
-- C' ≔ C[st'/p]
|
||||||
|
-- --------------------------------------------------------------------
|
||||||
|
-- caseπ st' return p ⇒ C of { a ⋄ b, ς.ih ⇒ u }
|
||||||
|
-- ⇝
|
||||||
|
-- u[s'/a, t'/b, ih'/ih] ∷ C'
|
||||||
|
whnf defs ctx (CaseW qty qtyIH tree ret body caseLoc) = do
|
||||||
|
Element tree treenf <- whnf defs ctx tree
|
||||||
|
case nchoose $ isWHead tree of
|
||||||
|
Left _ => case tree of
|
||||||
|
Ann (Sup {root, sub, _})
|
||||||
|
w@(W {shape, body = wbody, _}) treeLoc =>
|
||||||
|
let root = Ann root shape root.loc
|
||||||
|
wbody' = sub1 wbody root
|
||||||
|
tsub = Arr One wbody' w sub.loc
|
||||||
|
sub = Ann sub tsub sub.loc
|
||||||
|
ih' = LamY !(mnb "y" caseLoc) -- [todo] better name
|
||||||
|
(E $ CaseW qty qtyIH
|
||||||
|
(App (weakE 1 sub) (BVT 0 sub.loc) sub.loc)
|
||||||
|
(weakS 1 ret) (weakS 1 body) caseLoc) sub.loc
|
||||||
|
ihret = sub1 (weakS 1 ret)
|
||||||
|
(App (weakE 1 sub) (BVT 0 sub.loc) caseLoc)
|
||||||
|
tih = PiY qty !(mnb "y" caseLoc)
|
||||||
|
wbody' ihret caseLoc
|
||||||
|
ih = Ann ih' tih caseLoc
|
||||||
|
in
|
||||||
|
whnf defs ctx $
|
||||||
|
Ann (subN body [< root, sub, ih]) (sub1 ret tree) tree.loc
|
||||||
|
Coe ty p q val _ => do
|
||||||
|
wCoe defs ctx qty qtyIH ty p q val ret body caseLoc
|
||||||
|
Right nw => pure $
|
||||||
|
Element (CaseW qty qtyIH tree ret body caseLoc) $ treenf `orNo` nw
|
||||||
|
|
||||||
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
|
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
|
||||||
-- u ∷ C['a∷{a,…}/p]
|
-- u ∷ C['a∷{a,…}/p]
|
||||||
whnf defs ctx (CaseEnum pi tag ret arms caseLoc) = do
|
whnf defs ctx (CaseEnum pi tag ret arms caseLoc) = do
|
||||||
|
@ -730,6 +896,8 @@ CanWhnf Term Reduce.isRedexT where
|
||||||
whnf _ _ t@(Lam {}) = pure $ nred t
|
whnf _ _ t@(Lam {}) = pure $ nred t
|
||||||
whnf _ _ t@(Sig {}) = pure $ nred t
|
whnf _ _ t@(Sig {}) = pure $ nred t
|
||||||
whnf _ _ t@(Pair {}) = pure $ nred t
|
whnf _ _ t@(Pair {}) = pure $ nred t
|
||||||
|
whnf _ _ t@(W {}) = pure $ nred t
|
||||||
|
whnf _ _ t@(Sup {}) = pure $ nred t
|
||||||
whnf _ _ t@(Enum {}) = pure $ nred t
|
whnf _ _ t@(Enum {}) = pure $ nred t
|
||||||
whnf _ _ t@(Tag {}) = pure $ nred t
|
whnf _ _ t@(Tag {}) = pure $ nred t
|
||||||
whnf _ _ t@(Eq {}) = pure $ nred t
|
whnf _ _ t@(Eq {}) = pure $ nred t
|
||||||
|
|
|
@ -102,6 +102,16 @@ mutual
|
||||||
||| pair value
|
||| pair value
|
||||||
Pair : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
|
Pair : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
|
||||||
|
|
||||||
|
||| inductive (w) type `(x : A) ⊲ B`
|
||||||
|
W : (shape : Term d n) ->
|
||||||
|
(body : ScopeTerm d n) -> (loc : Loc) -> Term d n
|
||||||
|
||| subterms for `(x : A) ⊲ B` are:
|
||||||
|
||| 1. `x : A`
|
||||||
|
||| (the "constructor" and non-recursive fields)
|
||||||
|
||| 2. `f : 1.(B x) → (x : A) ⊲ B`
|
||||||
|
||| (the recursive fields, one for each element of B x)
|
||||||
|
Sup : (root, sub : Term d n) -> (loc : Loc) -> Term d n
|
||||||
|
|
||||||
||| enumeration type
|
||| enumeration type
|
||||||
Enum : (cases : SortedSet TagVal) -> (loc : Loc) -> Term d n
|
Enum : (cases : SortedSet TagVal) -> (loc : Loc) -> Term d n
|
||||||
||| enumeration value
|
||| enumeration value
|
||||||
|
@ -155,6 +165,13 @@ mutual
|
||||||
(loc : Loc) ->
|
(loc : Loc) ->
|
||||||
Elim d n
|
Elim d n
|
||||||
|
|
||||||
|
||| recursion
|
||||||
|
CaseW : (qty, qtyIH : Qty) -> (tree : Elim d n) ->
|
||||||
|
(ret : ScopeTerm d n) ->
|
||||||
|
(body : ScopeTermN 3 d n) ->
|
||||||
|
(loc : Loc) ->
|
||||||
|
Elim d n
|
||||||
|
|
||||||
||| enum matching
|
||| enum matching
|
||||||
CaseEnum : (qty : Qty) -> (tag : Elim d n) ->
|
CaseEnum : (qty : Qty) -> (tag : Elim d n) ->
|
||||||
(ret : ScopeTerm d n) ->
|
(ret : ScopeTerm d n) ->
|
||||||
|
@ -364,6 +381,7 @@ Located (Elim d n) where
|
||||||
(B _ loc).loc = loc
|
(B _ loc).loc = loc
|
||||||
(App _ _ loc).loc = loc
|
(App _ _ loc).loc = loc
|
||||||
(CasePair _ _ _ _ loc).loc = loc
|
(CasePair _ _ _ _ loc).loc = loc
|
||||||
|
(CaseW _ _ _ _ _ loc).loc = loc
|
||||||
(CaseEnum _ _ _ _ loc).loc = loc
|
(CaseEnum _ _ _ _ loc).loc = loc
|
||||||
(CaseNat _ _ _ _ _ _ loc).loc = loc
|
(CaseNat _ _ _ _ _ _ loc).loc = loc
|
||||||
(CaseBox _ _ _ _ loc).loc = loc
|
(CaseBox _ _ _ _ loc).loc = loc
|
||||||
|
@ -382,6 +400,8 @@ Located (Term d n) where
|
||||||
(Lam _ loc).loc = loc
|
(Lam _ loc).loc = loc
|
||||||
(Sig _ _ loc).loc = loc
|
(Sig _ _ loc).loc = loc
|
||||||
(Pair _ _ loc).loc = loc
|
(Pair _ _ loc).loc = loc
|
||||||
|
(W _ _ loc).loc = loc
|
||||||
|
(Sup _ _ loc).loc = loc
|
||||||
(Enum _ loc).loc = loc
|
(Enum _ loc).loc = loc
|
||||||
(Tag _ loc).loc = loc
|
(Tag _ loc).loc = loc
|
||||||
(Eq _ _ _ loc).loc = loc
|
(Eq _ _ _ loc).loc = loc
|
||||||
|
@ -412,6 +432,8 @@ Relocatable (Elim d n) where
|
||||||
setLoc loc (App fun arg _) = App fun arg loc
|
setLoc loc (App fun arg _) = App fun arg loc
|
||||||
setLoc loc (CasePair qty pair ret body _) =
|
setLoc loc (CasePair qty pair ret body _) =
|
||||||
CasePair qty pair ret body loc
|
CasePair qty pair ret body loc
|
||||||
|
setLoc loc (CaseW qty qtyIH tree ret body _) =
|
||||||
|
CaseW qty qtyIH tree ret body loc
|
||||||
setLoc loc (CaseEnum qty tag ret arms _) =
|
setLoc loc (CaseEnum qty tag ret arms _) =
|
||||||
CaseEnum qty tag ret arms loc
|
CaseEnum qty tag ret arms loc
|
||||||
setLoc loc (CaseNat qty qtyIH nat ret zero succ _) =
|
setLoc loc (CaseNat qty qtyIH nat ret zero succ _) =
|
||||||
|
@ -440,6 +462,8 @@ Relocatable (Term d n) where
|
||||||
setLoc loc (Lam body _) = Lam body loc
|
setLoc loc (Lam body _) = Lam body loc
|
||||||
setLoc loc (Sig fst snd _) = Sig fst snd loc
|
setLoc loc (Sig fst snd _) = Sig fst snd loc
|
||||||
setLoc loc (Pair fst snd _) = Pair fst snd loc
|
setLoc loc (Pair fst snd _) = Pair fst snd loc
|
||||||
|
setLoc loc (W shape body _) = W shape body loc
|
||||||
|
setLoc loc (Sup root sub _) = Sup root sub loc
|
||||||
setLoc loc (Enum cases _) = Enum cases loc
|
setLoc loc (Enum cases _) = Enum cases loc
|
||||||
setLoc loc (Tag tag _) = Tag tag loc
|
setLoc loc (Tag tag _) = Tag tag loc
|
||||||
setLoc loc (Eq ty l r _) = Eq ty l r loc
|
setLoc loc (Eq ty l r _) = Eq ty l r loc
|
||||||
|
|
|
@ -346,6 +346,8 @@ prettyTyCasePat KPi [< a, b] =
|
||||||
parens . hsep =<< sequence [prettyTBind a, arrowD, prettyTBind b]
|
parens . hsep =<< sequence [prettyTBind a, arrowD, prettyTBind b]
|
||||||
prettyTyCasePat KSig [< a, b] =
|
prettyTyCasePat KSig [< a, b] =
|
||||||
parens . hsep =<< sequence [prettyTBind a, timesD, prettyTBind b]
|
parens . hsep =<< sequence [prettyTBind a, timesD, prettyTBind b]
|
||||||
|
prettyTyCasePat KW [< a, b] =
|
||||||
|
parens . hsep =<< sequence [prettyTBind a, triD, prettyTBind b]
|
||||||
prettyTyCasePat KEnum [<] = hl Syntax $ text "{}"
|
prettyTyCasePat KEnum [<] = hl Syntax $ text "{}"
|
||||||
prettyTyCasePat KEq [< a0, a1, a, l, r] =
|
prettyTyCasePat KEq [< a0, a1, a, l, r] =
|
||||||
hsep <$> sequence (eqD :: map prettyTBind [a0, a1, a, l, r])
|
hsep <$> sequence (eqD :: map prettyTBind [a0, a1, a, l, r])
|
||||||
|
@ -420,6 +422,21 @@ prettyTerm dnames tnames p@(Pair fst snd _) =
|
||||||
withPrec Outer $ prettyTerm dnames tnames $ assert_smaller p t
|
withPrec Outer $ prettyTerm dnames tnames $ assert_smaller p t
|
||||||
pure $ separateTight !commaD lines
|
pure $ separateTight !commaD lines
|
||||||
|
|
||||||
|
prettyTerm dnames tnames (W a b _) = do
|
||||||
|
parensIfM W =<< do
|
||||||
|
left <- prettySigBind1 b.name dnames tnames a
|
||||||
|
right <- withPrec InW $
|
||||||
|
prettyTerm dnames (tnames :< b.name) (assert_smaller b b.term)
|
||||||
|
pure $ sep [hsep [left, !triD], right]
|
||||||
|
|
||||||
|
prettyTerm dnames tnames (Sup root sub _) = do
|
||||||
|
parensIfM Sup =<< do
|
||||||
|
left <- withPrec InSup $ prettyTerm dnames tnames root
|
||||||
|
right <- withPrec InSup $ prettyTerm dnames tnames sub
|
||||||
|
pure $
|
||||||
|
hsep [left, !diamondD, right] <|>
|
||||||
|
vsep [hsep [left, !diamondD], !(indentD right)]
|
||||||
|
|
||||||
prettyTerm dnames tnames (Enum cases _) =
|
prettyTerm dnames tnames (Enum cases _) =
|
||||||
prettyEnum $ SortedSet.toList cases
|
prettyEnum $ SortedSet.toList cases
|
||||||
|
|
||||||
|
@ -446,17 +463,22 @@ prettyTerm dnames tnames s@(DLam {}) =
|
||||||
prettyTerm dnames tnames (Nat _) = natD
|
prettyTerm dnames tnames (Nat _) = natD
|
||||||
prettyTerm dnames tnames (Zero _) = hl Syntax "0"
|
prettyTerm dnames tnames (Zero _) = hl Syntax "0"
|
||||||
prettyTerm dnames tnames (Succ p _) = do
|
prettyTerm dnames tnames (Succ p _) = do
|
||||||
succD <- succD
|
s <- succD
|
||||||
let succ : Doc opts -> Eff Pretty (Doc opts)
|
either (succ s) prettyNat =<< tryToNat s p
|
||||||
succ t = prettyAppD succD [t]
|
where
|
||||||
toNat : Term d n -> Eff Pretty (Either (Doc opts) Nat)
|
succ : Doc opts -> Doc opts -> Eff Pretty (Doc opts)
|
||||||
toNat s with (pushSubsts' s)
|
succ s t = prettyAppD s [t]
|
||||||
|
|
||||||
|
tryToNat : Doc opts -> Term d n -> Eff Pretty (Either (Doc opts) Nat)
|
||||||
|
tryToNat s t with (pushSubsts' t)
|
||||||
_ | Zero _ = pure $ Right 0
|
_ | Zero _ = pure $ Right 0
|
||||||
_ | Succ d _ = bitraverse succ (pure . S) =<<
|
_ | Succ d _ = bitraverse (succ s) (pure . S) =<<
|
||||||
toNat (assert_smaller s d)
|
tryToNat s (assert_smaller t d)
|
||||||
_ | s' = map Left . withPrec Arg $
|
_ | t' = map Left . withPrec Arg $
|
||||||
prettyTerm dnames tnames $ assert_smaller s s'
|
prettyTerm dnames tnames $ assert_smaller t t'
|
||||||
either succ (hl Syntax . text . show . S) =<< toNat p
|
|
||||||
|
prettyNat : Nat -> Eff Pretty (Doc opts)
|
||||||
|
prettyNat = hl Syntax . text . show . S
|
||||||
|
|
||||||
prettyTerm dnames tnames (BOX qty ty _) =
|
prettyTerm dnames tnames (BOX qty ty _) =
|
||||||
bracks . hcat =<<
|
bracks . hcat =<<
|
||||||
|
@ -493,6 +515,16 @@ prettyElim dnames tnames (CasePair qty pair ret body _) = do
|
||||||
prettyCase dnames tnames qty pair ret
|
prettyCase dnames tnames qty pair ret
|
||||||
[MkCaseArm pat [<] [< x, y] body.term]
|
[MkCaseArm pat [<] [< x, y] body.term]
|
||||||
|
|
||||||
|
prettyElim dnames tnames (CaseW qty qtyIH tree ret body _) = do
|
||||||
|
let [< t, r, ih] = body.names
|
||||||
|
pat0 <- hsep <$> sequence [prettyTBind t, diamondD, prettyTBind r]
|
||||||
|
ihpat <- map hcat $ sequence [prettyQty qtyIH, dotD, prettyTBind ih]
|
||||||
|
pat <- if ih.name == Unused
|
||||||
|
then pure pat0
|
||||||
|
else pure $ hsep [pat0 <+> !commaD, ihpat]
|
||||||
|
let arm = MkCaseArm pat [<] [< t, r, ih] body.term
|
||||||
|
prettyCase dnames tnames qty tree ret [arm]
|
||||||
|
|
||||||
prettyElim dnames tnames (CaseEnum qty tag ret arms _) = do
|
prettyElim dnames tnames (CaseEnum qty tag ret arms _) = do
|
||||||
arms <- for (SortedMap.toList arms) $ \(tag, body) =>
|
arms <- for (SortedMap.toList arms) $ \(tag, body) =>
|
||||||
pure $ MkCaseArm !(prettyTag tag) [<] [<] body
|
pure $ MkCaseArm !(prettyTag tag) [<] [<] body
|
||||||
|
|
|
@ -261,6 +261,10 @@ mutual
|
||||||
nclo $ Sig (a // th // ph) (b // th // ph) loc
|
nclo $ Sig (a // th // ph) (b // th // ph) loc
|
||||||
pushSubstsWith th ph (Pair s t loc) =
|
pushSubstsWith th ph (Pair s t loc) =
|
||||||
nclo $ Pair (s // th // ph) (t // th // ph) loc
|
nclo $ Pair (s // th // ph) (t // th // ph) loc
|
||||||
|
pushSubstsWith th ph (W a b loc) =
|
||||||
|
nclo $ W (a // th // ph) (b // th // ph) loc
|
||||||
|
pushSubstsWith th ph (Sup s t loc) =
|
||||||
|
nclo $ Sup (s // th // ph) (t // th // ph) loc
|
||||||
pushSubstsWith th ph (Enum tags loc) =
|
pushSubstsWith th ph (Enum tags loc) =
|
||||||
nclo $ Enum tags loc
|
nclo $ Enum tags loc
|
||||||
pushSubstsWith th ph (Tag tag loc) =
|
pushSubstsWith th ph (Tag tag loc) =
|
||||||
|
@ -299,6 +303,8 @@ mutual
|
||||||
nclo $ App (f // th // ph) (s // th // ph) loc
|
nclo $ App (f // th // ph) (s // th // ph) loc
|
||||||
pushSubstsWith th ph (CasePair pi p r b loc) =
|
pushSubstsWith th ph (CasePair pi p r b loc) =
|
||||||
nclo $ CasePair pi (p // th // ph) (r // th // ph) (b // th // ph) loc
|
nclo $ CasePair pi (p // th // ph) (r // th // ph) (b // th // ph) loc
|
||||||
|
pushSubstsWith th ph (CaseW pi pi' e r b loc) =
|
||||||
|
nclo $ CaseW pi pi' (e // th // ph) (r // th // ph) (b // th // ph) loc
|
||||||
pushSubstsWith th ph (CaseEnum pi t r arms loc) =
|
pushSubstsWith th ph (CaseEnum pi t r arms loc) =
|
||||||
nclo $ CaseEnum pi (t // th // ph) (r // th // ph)
|
nclo $ CaseEnum pi (t // th // ph) (r // th // ph)
|
||||||
(map (\b => b // th // ph) arms) loc
|
(map (\b => b // th // ph) arms) loc
|
||||||
|
|
|
@ -52,6 +52,10 @@ mutual
|
||||||
Sig <$> tightenT p fst <*> tightenS p snd <*> pure loc
|
Sig <$> tightenT p fst <*> tightenS p snd <*> pure loc
|
||||||
tightenT' p (Pair fst snd loc) =
|
tightenT' p (Pair fst snd loc) =
|
||||||
Pair <$> tightenT p fst <*> tightenT p snd <*> pure loc
|
Pair <$> tightenT p fst <*> tightenT p snd <*> pure loc
|
||||||
|
tightenT' p (W shape body loc) =
|
||||||
|
W <$> tightenT p shape <*> tightenS p body <*> pure loc
|
||||||
|
tightenT' p (Sup root sub loc) =
|
||||||
|
Sup <$> tightenT p root <*> tightenT p sub <*> pure loc
|
||||||
tightenT' p (Enum cases loc) =
|
tightenT' p (Enum cases loc) =
|
||||||
pure $ Enum cases loc
|
pure $ Enum cases loc
|
||||||
tightenT' p (Tag tag loc) =
|
tightenT' p (Tag tag loc) =
|
||||||
|
@ -87,6 +91,12 @@ mutual
|
||||||
<*> tightenS p ret
|
<*> tightenS p ret
|
||||||
<*> tightenS p body
|
<*> tightenS p body
|
||||||
<*> pure loc
|
<*> pure loc
|
||||||
|
tightenE' p (CaseW qty qtyIH tree ret body loc) =
|
||||||
|
CaseW qty qtyIH
|
||||||
|
<$> tightenE p tree
|
||||||
|
<*> tightenS p ret
|
||||||
|
<*> tightenS p body
|
||||||
|
<*> pure loc
|
||||||
tightenE' p (CaseEnum qty tag ret arms loc) =
|
tightenE' p (CaseEnum qty tag ret arms loc) =
|
||||||
CaseEnum qty <$> tightenE p tag
|
CaseEnum qty <$> tightenE p tag
|
||||||
<*> tightenS p ret
|
<*> tightenS p ret
|
||||||
|
@ -167,6 +177,10 @@ mutual
|
||||||
Sig <$> dtightenT p fst <*> dtightenS p snd <*> pure loc
|
Sig <$> dtightenT p fst <*> dtightenS p snd <*> pure loc
|
||||||
dtightenT' p (Pair fst snd loc) =
|
dtightenT' p (Pair fst snd loc) =
|
||||||
Pair <$> dtightenT p fst <*> dtightenT p snd <*> pure loc
|
Pair <$> dtightenT p fst <*> dtightenT p snd <*> pure loc
|
||||||
|
dtightenT' p (W shape body loc) =
|
||||||
|
W <$> dtightenT p shape <*> dtightenS p body <*> pure loc
|
||||||
|
dtightenT' p (Sup root sub loc) =
|
||||||
|
Sup <$> dtightenT p root <*> dtightenT p sub <*> pure loc
|
||||||
dtightenT' p (Enum cases loc) =
|
dtightenT' p (Enum cases loc) =
|
||||||
pure $ Enum cases loc
|
pure $ Enum cases loc
|
||||||
dtightenT' p (Tag tag loc) =
|
dtightenT' p (Tag tag loc) =
|
||||||
|
@ -202,6 +216,12 @@ mutual
|
||||||
<*> dtightenS p ret
|
<*> dtightenS p ret
|
||||||
<*> dtightenS p body
|
<*> dtightenS p body
|
||||||
<*> pure loc
|
<*> pure loc
|
||||||
|
dtightenE' p (CaseW qty qtyIH tree ret body loc) =
|
||||||
|
CaseW qty qtyIH
|
||||||
|
<$> dtightenE p tree
|
||||||
|
<*> dtightenS p ret
|
||||||
|
<*> dtightenS p body
|
||||||
|
<*> pure loc
|
||||||
dtightenE' p (CaseEnum qty tag ret arms loc) =
|
dtightenE' p (CaseEnum qty tag ret arms loc) =
|
||||||
CaseEnum qty <$> dtightenE p tag
|
CaseEnum qty <$> dtightenE p tag
|
||||||
<*> dtightenS p ret
|
<*> dtightenS p ret
|
||||||
|
|
|
@ -9,7 +9,7 @@ import Generics.Derive
|
||||||
|
|
||||||
|
|
||||||
public export
|
public export
|
||||||
data TyConKind = KTYPE | KPi | KSig | KEnum | KEq | KNat | KBOX
|
data TyConKind = KTYPE | KPi | KSig | KW | KEnum | KEq | KNat | KBOX
|
||||||
%name TyConKind k
|
%name TyConKind k
|
||||||
%runElab derive "TyConKind" [Eq.Eq, Ord.Ord, Show.Show, Generic, Meta, DecEq]
|
%runElab derive "TyConKind" [Eq.Eq, Ord.Ord, Show.Show, Generic, Meta, DecEq]
|
||||||
|
|
||||||
|
@ -28,6 +28,7 @@ arity : TyConKind -> Nat
|
||||||
arity KTYPE = 0
|
arity KTYPE = 0
|
||||||
arity KPi = 2
|
arity KPi = 2
|
||||||
arity KSig = 2
|
arity KSig = 2
|
||||||
|
arity KW = 2
|
||||||
arity KEnum = 0
|
arity KEnum = 0
|
||||||
arity KEq = 5
|
arity KEq = 5
|
||||||
arity KNat = 0
|
arity KNat = 0
|
||||||
|
|
|
@ -57,27 +57,40 @@ typecaseTel : (k : TyConKind) -> BContext (arity k) -> Universe ->
|
||||||
CtxExtension d n (arity k + n)
|
CtxExtension d n (arity k + n)
|
||||||
typecaseTel k xs u = case k of
|
typecaseTel k xs u = case k of
|
||||||
KTYPE => [<]
|
KTYPE => [<]
|
||||||
-- A : ★ᵤ, B : 0.A → ★ᵤ
|
KPi => binaryTyCon xs
|
||||||
KPi =>
|
KSig => binaryTyCon xs
|
||||||
let [< a, b] = xs in
|
KW => binaryTyCon xs
|
||||||
[< (Zero, a, TYPE u a.loc),
|
|
||||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)]
|
|
||||||
KSig =>
|
|
||||||
let [< a, b] = xs in
|
|
||||||
[< (Zero, a, TYPE u a.loc),
|
|
||||||
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)]
|
|
||||||
KEnum => [<]
|
KEnum => [<]
|
||||||
-- A₀ : ★ᵤ, A₁ : ★ᵤ, A : (A₀ ≡ A₁ : ★ᵤ), L : A₀, R : A₀
|
KEq => eqCon xs
|
||||||
KEq =>
|
KNat => [<]
|
||||||
let [< a0, a1, a, l, r] = xs in
|
KBOX => unaryTyCon xs
|
||||||
|
where
|
||||||
|
-- 0.A : ★ᵤ
|
||||||
|
unaryTyCon : BContext 1 -> CtxExtension d n (S n)
|
||||||
|
unaryTyCon [< a] = [< (Zero, a, TYPE u a.loc)]
|
||||||
|
|
||||||
|
-- 0.A : ★ᵤ, 0.B : 0.A → ★ᵤ
|
||||||
|
binaryTyCon : BContext 2 -> CtxExtension d n (2 + n)
|
||||||
|
binaryTyCon [< a, b] =
|
||||||
|
[< (Zero, a, TYPE u a.loc),
|
||||||
|
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)]
|
||||||
|
|
||||||
|
-- 0.A₀ : ★ᵤ, 0.A₁ : ★ᵤ, 0.A : (A₀ ≡ A₁ : ★ᵤ), 0.L : A₀, 0.R : A₁
|
||||||
|
eqCon : BContext 5 -> CtxExtension d n (5 + n)
|
||||||
|
eqCon [< a0, a1, a, l, r] =
|
||||||
[< (Zero, a0, TYPE u a0.loc),
|
[< (Zero, a0, TYPE u a0.loc),
|
||||||
(Zero, a1, TYPE u a1.loc),
|
(Zero, a1, TYPE u a1.loc),
|
||||||
(Zero, a, Eq0 (TYPE u a.loc) (BVT 1 a.loc) (BVT 0 a.loc) a.loc),
|
(Zero, a, Eq0 (TYPE u a.loc) (BVT 1 a.loc) (BVT 0 a.loc) a.loc),
|
||||||
(Zero, l, BVT 2 l.loc),
|
(Zero, l, BVT 2 l.loc),
|
||||||
(Zero, r, BVT 2 r.loc)]
|
(Zero, r, BVT 2 r.loc)]
|
||||||
KNat => [<]
|
|
||||||
-- A : ★ᵤ
|
||| if a ⋄ b : (x : A) ⊲ B, then b : `supSubTy a A B _`
|
||||||
KBOX => let [< a] = xs in [< (Zero, a, TYPE u a.loc)]
|
||| i.e. 1.B[a∷A/x] → ((x : A) ⊲ B)
|
||||||
|
export
|
||||||
|
supSubTy : (root, rootTy : Term d n) ->
|
||||||
|
(body : ScopeTerm d n) -> Loc -> Term d n
|
||||||
|
supSubTy root rootTy body loc =
|
||||||
|
Arr One (sub1 body (Ann root rootTy root.loc)) (W rootTy body loc) loc
|
||||||
|
|
||||||
|
|
||||||
mutual
|
mutual
|
||||||
|
@ -188,6 +201,17 @@ mutual
|
||||||
|
|
||||||
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
|
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
|
check' ctx sg t@(W {}) ty = toCheckType ctx sg t ty
|
||||||
|
|
||||||
|
check' ctx sg (Sup root sub loc) ty = do
|
||||||
|
(shape, body) <- expectW !(askAt DEFS) ctx ty.loc ty
|
||||||
|
-- if Ψ | Γ ⊢ σ · a ⇐ A ⊳ Σ₁
|
||||||
|
qroot <- checkC ctx sg root shape
|
||||||
|
-- if Ψ | Γ ⊢ σ · b ⇐ 1.B[a∷A/x] → ((x : A) ⊲ B) ⊳ Σ₂
|
||||||
|
qsub <- checkC ctx sg sub (supSubTy root shape body sub.loc)
|
||||||
|
-- then Ψ | Γ ⊢ σ · (a ⋄ b) ⇐ ((x : A) ⊲ B) ⊳ Σ₁+Σ₂
|
||||||
|
pure $ qroot + qsub
|
||||||
|
|
||||||
check' ctx sg (Pair fst snd loc) ty = do
|
check' ctx sg (Pair fst snd loc) ty = do
|
||||||
(tfst, tsnd) <- expectSig !(askAt DEFS) ctx ty.loc ty
|
(tfst, tsnd) <- expectSig !(askAt DEFS) ctx ty.loc ty
|
||||||
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
|
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
|
||||||
|
@ -281,6 +305,16 @@ mutual
|
||||||
checkType' ctx t@(Pair {}) u =
|
checkType' ctx t@(Pair {}) u =
|
||||||
throw $ NotType t.loc ctx t
|
throw $ NotType t.loc ctx t
|
||||||
|
|
||||||
|
checkType' ctx (W shape body _) u = do
|
||||||
|
-- if Ψ | Γ ⊢₀ A ⇐ Type ℓ
|
||||||
|
checkTypeC ctx shape u
|
||||||
|
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type ℓ
|
||||||
|
checkTypeScope ctx shape body u
|
||||||
|
-- then Ψ | Γ ⊢₀ (x : A) ⊲ π.B ⇐ Type ℓ
|
||||||
|
|
||||||
|
checkType' ctx t@(Sup {}) u =
|
||||||
|
throw $ NotType t.loc ctx t
|
||||||
|
|
||||||
checkType' ctx (Enum {}) u = pure ()
|
checkType' ctx (Enum {}) u = pure ()
|
||||||
-- Ψ | Γ ⊢₀ {ts} ⇐ Type ℓ
|
-- Ψ | Γ ⊢₀ {ts} ⇐ Type ℓ
|
||||||
|
|
||||||
|
@ -388,6 +422,42 @@ mutual
|
||||||
qout = pi * pairres.qout + bodyout
|
qout = pi * pairres.qout + bodyout
|
||||||
}
|
}
|
||||||
|
|
||||||
|
infer' ctx sg (CaseW pi si tree ret body loc) = do
|
||||||
|
-- if 1 ≤ π
|
||||||
|
expectCompatQ loc One pi
|
||||||
|
-- if Ψ | Γ ⊢ σ · e ⇒ ((x : A) ⊲ B) ⊳ Σ₁
|
||||||
|
InfRes {type = w, qout = qtree} <- inferC ctx sg tree
|
||||||
|
-- if Ψ | Γ, p : (x : A) ⊲ B ⊢₀ C ⇐ Type
|
||||||
|
checkTypeC (extendTy Zero ret.name w ctx) ret.term Nothing
|
||||||
|
(shape, tbody) <- expectW !(askAt DEFS) ctx tree.loc w
|
||||||
|
-- if Ψ | Γ, x : A, y : 1.B → (x : A) ⊲ B,
|
||||||
|
-- ih : π.(z : B) → C[y z/p]
|
||||||
|
-- ⊢ σ · u ⇐ C[((x ⋄ y) ∷ (x : A) ⊲ B)/p]
|
||||||
|
-- ⊳ Σ₂, π'.x, ς₁.y, ς₂.ih
|
||||||
|
-- with π' ≤ σπ, ς₂ ≤ σς, ς₁+ς₂ ≤ σπ
|
||||||
|
let [< x, y, ih] = body.names
|
||||||
|
-- 1.B → (x : A) ⊲ B
|
||||||
|
tsub = Arr One tbody.term (weakT 1 w) y.loc
|
||||||
|
-- y z
|
||||||
|
ihret = App (BV 1 y.loc) (BVT 0 ih.loc) y.loc
|
||||||
|
-- π.(z : B) → C[y z/p]
|
||||||
|
tih = PiY pi !(mnb "z" ih.loc)
|
||||||
|
(tbody.term // (BV 1 x.loc ::: shift 2))
|
||||||
|
(ret.term // (ihret ::: shift 3)) ih.loc
|
||||||
|
sp = sg.fst * pi; ss = sg.fst * si
|
||||||
|
ctx' = extendTyN [< (sp, x, shape), (sp, y, tsub), (ss, ih, tih)] ctx
|
||||||
|
qbody' <- checkC ctx' sg body.term $ substCaseWRet body.names w ret
|
||||||
|
let qbody :< qx :< qy :< qih = qbody'
|
||||||
|
expectCompatQ x.loc qx sp
|
||||||
|
expectCompatQ (ih.loc `or` loc) qih ss
|
||||||
|
expectCompatQ y.loc (qy + qih) sp -- [todo] better error message
|
||||||
|
-- then Ψ | Γ ⊢ σ · caseπ e return p ⇒ C of { x ⋄ y, ς.ih ⇒ u }
|
||||||
|
-- ⇒ C[e/p] ⊳ Σ₁+Σ₂
|
||||||
|
pure $ InfRes {
|
||||||
|
type = sub1 ret tree,
|
||||||
|
qout = qtree + qbody
|
||||||
|
}
|
||||||
|
|
||||||
infer' ctx sg (CaseEnum pi t ret arms loc) {d, n} = do
|
infer' ctx sg (CaseEnum pi t ret arms loc) {d, n} = do
|
||||||
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
|
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
|
||||||
tres <- inferC ctx sg t
|
tres <- inferC ctx sg t
|
||||||
|
|
|
@ -47,10 +47,18 @@ public export
|
||||||
substCasePairRet : BContext 2 -> Term d n -> ScopeTerm d n -> Term d (2 + n)
|
substCasePairRet : BContext 2 -> Term d n -> ScopeTerm d n -> Term d (2 + n)
|
||||||
substCasePairRet [< x, y] dty retty =
|
substCasePairRet [< x, y] dty retty =
|
||||||
let tm = Pair (BVT 1 x.loc) (BVT 0 y.loc) $ x.loc `extendL` y.loc
|
let tm = Pair (BVT 1 x.loc) (BVT 0 y.loc) $ x.loc `extendL` y.loc
|
||||||
arg = Ann tm (dty // fromNat 2) tm.loc
|
arg = Ann tm (dty // shift 2) tm.loc
|
||||||
in
|
in
|
||||||
retty.term // (arg ::: shift 2)
|
retty.term // (arg ::: shift 2)
|
||||||
|
|
||||||
|
public export
|
||||||
|
substCaseWRet : BContext 3 -> Term d n -> ScopeTerm d n -> Term d (3 + n)
|
||||||
|
substCaseWRet [< x, y, ih] dty retty =
|
||||||
|
let tm = Sup (BVT 2 x.loc) (BVT 1 y.loc) $ x.loc `extendL` y.loc
|
||||||
|
arg = Ann tm (dty // shift 3) tm.loc
|
||||||
|
in
|
||||||
|
sub1 (weakS 3 retty) arg
|
||||||
|
|
||||||
public export
|
public export
|
||||||
substCaseSuccRet : BContext 2 -> ScopeTerm d n -> Term d (2 + n)
|
substCaseSuccRet : BContext 2 -> ScopeTerm d n -> Term d (2 + n)
|
||||||
substCaseSuccRet [< p, ih] retty =
|
substCaseSuccRet [< p, ih] retty =
|
||||||
|
@ -95,6 +103,10 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)}
|
||||||
expectSig : Term d n -> Eff fs (Term d n, ScopeTerm d n)
|
expectSig : Term d n -> Eff fs (Term d n, ScopeTerm d n)
|
||||||
expectSig = expect ExpectedSig `(Sig {fst, snd, _}) `((fst, snd))
|
expectSig = expect ExpectedSig `(Sig {fst, snd, _}) `((fst, snd))
|
||||||
|
|
||||||
|
export covering %inline
|
||||||
|
expectW : Term d n -> Eff fs (Term d n, ScopeTerm d n)
|
||||||
|
expectW = expect ExpectedW `(W {shape, body, _}) `((shape, body))
|
||||||
|
|
||||||
export covering %inline
|
export covering %inline
|
||||||
expectEnum : Term d n -> Eff fs (SortedSet TagVal)
|
expectEnum : Term d n -> Eff fs (SortedSet TagVal)
|
||||||
expectEnum = expect ExpectedEnum `(Enum {cases, _}) `(cases)
|
expectEnum = expect ExpectedEnum `(Enum {cases, _}) `(cases)
|
||||||
|
@ -143,6 +155,10 @@ parameters (defs : Definitions) {auto _ : (Has ErrorEff fs, Has NameGen fs)}
|
||||||
expectSig : Term 0 n -> Eff fs (Term 0 n, ScopeTerm 0 n)
|
expectSig : Term 0 n -> Eff fs (Term 0 n, ScopeTerm 0 n)
|
||||||
expectSig = expect ExpectedSig `(Sig {fst, snd, _}) `((fst, snd))
|
expectSig = expect ExpectedSig `(Sig {fst, snd, _}) `((fst, snd))
|
||||||
|
|
||||||
|
export covering %inline
|
||||||
|
expectW : Term 0 n -> Eff fs (Term 0 n, ScopeTerm 0 n)
|
||||||
|
expectW = expect ExpectedW `(W {shape, body, _}) `((shape, body))
|
||||||
|
|
||||||
export covering %inline
|
export covering %inline
|
||||||
expectEnum : Term 0 n -> Eff fs (SortedSet TagVal)
|
expectEnum : Term 0 n -> Eff fs (SortedSet TagVal)
|
||||||
expectEnum = expect ExpectedEnum `(Enum {cases, _}) `(cases)
|
expectEnum = expect ExpectedEnum `(Enum {cases, _}) `(cases)
|
||||||
|
|
|
@ -58,6 +58,7 @@ data Error
|
||||||
= ExpectedTYPE Loc (NameContexts d n) (Term d n)
|
= ExpectedTYPE Loc (NameContexts d n) (Term d n)
|
||||||
| ExpectedPi Loc (NameContexts d n) (Term d n)
|
| ExpectedPi Loc (NameContexts d n) (Term d n)
|
||||||
| ExpectedSig Loc (NameContexts d n) (Term d n)
|
| ExpectedSig Loc (NameContexts d n) (Term d n)
|
||||||
|
| ExpectedW Loc (NameContexts d n) (Term d n)
|
||||||
| ExpectedEnum Loc (NameContexts d n) (Term d n)
|
| ExpectedEnum Loc (NameContexts d n) (Term d n)
|
||||||
| ExpectedEq Loc (NameContexts d n) (Term d n)
|
| ExpectedEq Loc (NameContexts d n) (Term d n)
|
||||||
| ExpectedNat Loc (NameContexts d n) (Term d n)
|
| ExpectedNat Loc (NameContexts d n) (Term d n)
|
||||||
|
@ -116,6 +117,7 @@ Located Error where
|
||||||
(ExpectedTYPE loc _ _).loc = loc
|
(ExpectedTYPE loc _ _).loc = loc
|
||||||
(ExpectedPi loc _ _).loc = loc
|
(ExpectedPi loc _ _).loc = loc
|
||||||
(ExpectedSig loc _ _).loc = loc
|
(ExpectedSig loc _ _).loc = loc
|
||||||
|
(ExpectedW loc _ _).loc = loc
|
||||||
(ExpectedEnum loc _ _).loc = loc
|
(ExpectedEnum loc _ _).loc = loc
|
||||||
(ExpectedEq loc _ _).loc = loc
|
(ExpectedEq loc _ _).loc = loc
|
||||||
(ExpectedNat loc _ _).loc = loc
|
(ExpectedNat loc _ _).loc = loc
|
||||||
|
@ -256,6 +258,10 @@ prettyErrorNoLoc showContext = \case
|
||||||
hangDSingle "expected a pair type, but got"
|
hangDSingle "expected a pair type, but got"
|
||||||
!(prettyTerm ctx.dnames ctx.tnames s)
|
!(prettyTerm ctx.dnames ctx.tnames s)
|
||||||
|
|
||||||
|
ExpectedW _ ctx s =>
|
||||||
|
hangDSingle "expected an inductive (W) type, but got"
|
||||||
|
!(prettyTerm ctx.dnames ctx.tnames s)
|
||||||
|
|
||||||
ExpectedEnum _ ctx s =>
|
ExpectedEnum _ ctx s =>
|
||||||
hangDSingle "expected an enumeration type, but got"
|
hangDSingle "expected an enumeration type, but got"
|
||||||
!(prettyTerm ctx.dnames ctx.tnames s)
|
!(prettyTerm ctx.dnames ctx.tnames s)
|
||||||
|
|
Loading…
Reference in a new issue