quox/lib/Quox/Typechecker.idr

575 lines
21 KiB
Idris
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Quox.Typechecker
import public Quox.Typing
import public Quox.Equal
import Quox.Displace
import Data.List
import Data.SnocVect
import Data.List1
import Quox.EffExtra
%default total
public export
0 TCEff : List (Type -> Type)
TCEff = [ErrorEff, DefsReader, NameGen]
public export
0 TC : Type -> Type
TC = Eff TCEff
export
runTCWith : NameSuf -> Definitions -> TC a -> (Either Error a, NameSuf)
runTCWith = runEqualWith
export
runTC : Definitions -> TC a -> Either Error a
runTC = runEqual
parameters (loc : Loc)
export
popQs : Has ErrorEff fs => QContext s -> QOutput (s + n) -> Eff fs (QOutput n)
popQs [<] qout = pure qout
popQs (pis :< pi) (qout :< rh) = do expectCompatQ loc rh pi; popQs pis qout
export %inline
popQ : Has ErrorEff fs => Qty -> QOutput (S n) -> Eff fs (QOutput n)
popQ pi = popQs [< pi]
export
lubs1 : List1 (QOutput n) -> QOutput n
lubs1 ([<] ::: _) = [<]
lubs1 ((qs :< p) ::: pqs) =
let (qss, ps) = unzip $ map unsnoc pqs in
lubs1 (qs ::: qss) :< foldl lub p ps
export
lubs : TyContext d n -> List (QOutput n) -> QOutput n
lubs ctx [] = zeroFor ctx
lubs ctx (x :: xs) = lubs1 $ x ::: xs
export
typecaseTel : (k : TyConKind) -> BContext (arity k) -> Universe ->
CtxExtension d n (arity k + n)
typecaseTel k xs u = case k of
KTYPE => [<]
KPi => binaryTyCon xs
KSig => binaryTyCon xs
KW => binaryTyCon xs
KEnum => [<]
KEq => eqCon xs
KNat => [<]
KBOX => unaryTyCon xs
where
-- 0.A : ★ᵤ
unaryTyCon : BContext 1 -> CtxExtension d n (S n)
unaryTyCon [< a] = [< (Zero, a, TYPE u a.loc)]
-- 0.A : ★ᵤ, 0.B : 0.A → ★ᵤ
binaryTyCon : BContext 2 -> CtxExtension d n (2 + n)
binaryTyCon [< a, b] =
[< (Zero, a, TYPE u a.loc),
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)]
-- 0.A₀ : ★ᵤ, 0.A₁ : ★ᵤ, 0.A : (A₀ ≡ A₁ : ★ᵤ), 0.L : A₀, 0.R : A₁
eqCon : BContext 5 -> CtxExtension d n (5 + n)
eqCon [< a0, a1, a, l, r] =
[< (Zero, a0, TYPE u a0.loc),
(Zero, a1, TYPE u a1.loc),
(Zero, a, Eq0 (TYPE u a.loc) (BVT 1 a.loc) (BVT 0 a.loc) a.loc),
(Zero, l, BVT 2 l.loc),
(Zero, r, BVT 2 r.loc)]
||| if a ⋄ b : (x : A) ⊲ B, then b : `supSubTy a A B _`
||| i.e. 1.B[a∷A/x] → ((x : A) ⊲ B)
export
supSubTy : (root, rootTy : Term d n) ->
(body : ScopeTerm d n) -> Loc -> Term d n
supSubTy root rootTy body loc =
Arr One (sub1 body (Ann root rootTy root.loc)) (W rootTy body loc) loc
mutual
||| "Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ"
|||
||| `check ctx sg subj ty` checks that in the context `ctx`, the term
||| `subj` has the type `ty`, with quantity `sg`. if so, returns the
||| quantities of all bound variables that it used.
|||
||| if the dimension context is inconsistent, then return `Nothing`, without
||| doing any further work.
export covering %inline
check : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n ->
TC (CheckResult ctx.dctx n)
check ctx sg subj ty = ifConsistent ctx.dctx $ checkC ctx sg subj ty
||| "Ψ | Γ ⊢₀ s ⇐ A"
|||
||| `check0 ctx subj ty` checks a term (as `check`) in a zero context.
export covering %inline
check0 : TyContext d n -> Term d n -> Term d n -> TC ()
check0 ctx tm ty = ignore $ check ctx szero tm ty
-- the output will always be 𝟎 because the subject quantity is 0
||| `check`, assuming the dimension context is consistent
export covering %inline
checkC : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n ->
TC (CheckResult' n)
checkC ctx sg subj ty =
wrapErr (WhileChecking ctx sg.fst subj ty) $
checkCNoWrap ctx sg subj ty
export covering %inline
checkCNoWrap : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n ->
TC (CheckResult' n)
checkCNoWrap ctx sg subj ty =
let Element subj nc = pushSubsts subj in
check' ctx sg subj ty
||| "Ψ | Γ ⊢₀ s ⇐ ★ᵢ"
|||
||| `checkType ctx subj ty` checks a type (in a zero context). sometimes the
||| universe doesn't matter, only that a term is _a_ type, so it is optional.
export covering %inline
checkType : TyContext d n -> Term d n -> Maybe Universe -> TC ()
checkType ctx subj l = ignore $ ifConsistent ctx.dctx $ checkTypeC ctx subj l
export covering %inline
checkTypeC : TyContext d n -> Term d n -> Maybe Universe -> TC ()
checkTypeC ctx subj l =
wrapErr (WhileCheckingTy ctx subj l) $ checkTypeNoWrap ctx subj l
export covering %inline
checkTypeNoWrap : TyContext d n -> Term d n -> Maybe Universe -> TC ()
checkTypeNoWrap ctx subj l =
let Element subj nc = pushSubsts subj in
checkType' ctx subj l
||| "Ψ | Γ ⊢ σ · e ⇒ A ⊳ Σ"
|||
||| `infer ctx sg subj` infers the type of `subj` in the context `ctx`,
||| and returns its type and the bound variables it used.
|||
||| if the dimension context is inconsistent, then return `Nothing`, without
||| doing any further work.
export covering %inline
infer : (ctx : TyContext d n) -> SQty -> Elim d n ->
TC (InferResult ctx.dctx d n)
infer ctx sg subj = ifConsistent ctx.dctx $ inferC ctx sg subj
||| `infer`, assuming the dimension context is consistent
export covering %inline
inferC : (ctx : TyContext d n) -> SQty -> Elim d n ->
TC (InferResult' d n)
inferC ctx sg subj =
wrapErr (WhileInferring ctx sg.fst subj) $
let Element subj nc = pushSubsts subj in
infer' ctx sg subj
private covering
toCheckType : TyContext d n -> SQty ->
(subj : Term d n) -> (0 nc : NotClo subj) => Term d n ->
TC (CheckResult' n)
toCheckType ctx sg t ty = do
u <- expectTYPE !(askAt DEFS) ctx ty.loc ty
expectEqualQ t.loc Zero sg.fst
checkTypeNoWrap ctx t (Just u)
pure $ zeroFor ctx
private covering
check' : TyContext d n -> SQty ->
(subj : Term d n) -> (0 nc : NotClo subj) => Term d n ->
TC (CheckResult' n)
check' ctx sg t@(TYPE {}) ty = toCheckType ctx sg t ty
check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty
check' ctx sg (Lam body loc) ty = do
(qty, arg, res) <- expectPi !(askAt DEFS) ctx ty.loc ty
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
-- with ρ ≤ σπ
let qty' = sg.fst * qty
qout <- checkC (extendTy qty' body.name arg ctx) sg body.term res.term
-- then Ψ | Γ ⊢ σ · (λx ⇒ t) ⇐ (π·x : A) → B ⊳ Σ
popQ loc qty' qout
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
check' ctx sg t@(W {}) ty = toCheckType ctx sg t ty
check' ctx sg (Sup root sub loc) ty = do
(shape, body) <- expectW !(askAt DEFS) ctx ty.loc ty
-- if Ψ | Γ ⊢ σ · a ⇐ A ⊳ Σ₁
qroot <- checkC ctx sg root shape
-- if Ψ | Γ ⊢ σ · b ⇐ 1.B[a∷A/x] → ((x : A) ⊲ B) ⊳ Σ₂
qsub <- checkC ctx sg sub (supSubTy root shape body sub.loc)
-- then Ψ | Γ ⊢ σ · (a ⋄ b) ⇐ ((x : A) ⊲ B) ⊳ Σ₁+Σ₂
pure $ qroot + qsub
check' ctx sg (Pair fst snd loc) ty = do
(tfst, tsnd) <- expectSig !(askAt DEFS) ctx ty.loc ty
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
qfst <- checkC ctx sg fst tfst
let tsnd = sub1 tsnd (Ann fst tfst fst.loc)
-- if Ψ | Γ ⊢ σ · t ⇐ B[s] ⊳ Σ₂
qsnd <- checkC ctx sg snd tsnd
-- then Ψ | Γ ⊢ σ · (s, t) ⇐ (x : A) × B ⊳ Σ₁ + Σ₂
pure $ qfst + qsnd
check' ctx sg t@(Enum {}) ty = toCheckType ctx sg t ty
check' ctx sg (Tag t loc) ty = do
tags <- expectEnum !(askAt DEFS) ctx ty.loc ty
-- if t ∈ ts
unless (t `elem` tags) $ throw $ TagNotIn loc t tags
-- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎
pure $ zeroFor ctx
check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty
check' ctx sg (DLam body loc) ty = do
(ty, l, r) <- expectEq !(askAt DEFS) ctx ty.loc ty
let ctx' = extendDim body.name ctx
ty = ty.term
body = body.term
-- if Ψ, i | Γ ⊢ σ · t ⇐ A ⊳ Σ
qout <- checkC ctx' sg body ty
-- if Ψ, i, i = 0 | Γ ⊢ t = l : A
lift $ equal loc (eqDim (B VZ loc) (K Zero loc) ctx') ty body (dweakT 1 l)
-- if Ψ, i, i = 1 | Γ ⊢ t = r : A
lift $ equal loc (eqDim (B VZ loc) (K One loc) ctx') ty body (dweakT 1 r)
-- then Ψ | Γ ⊢ σ · (δ i ⇒ t) ⇐ Eq [i ⇒ A] l r ⊳ Σ
pure qout
check' ctx sg t@(Nat {}) ty = toCheckType ctx sg t ty
check' ctx sg (Zero {}) ty = do
expectNat !(askAt DEFS) ctx ty.loc ty
pure $ zeroFor ctx
check' ctx sg (Succ n {}) ty = do
expectNat !(askAt DEFS) ctx ty.loc ty
checkC ctx sg n ty
check' ctx sg t@(BOX {}) ty = toCheckType ctx sg t ty
check' ctx sg (Box val loc) ty = do
(q, ty) <- expectBOX !(askAt DEFS) ctx ty.loc ty
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
valout <- checkC ctx sg val ty
-- then Ψ | Γ ⊢ σ · [s] ⇐ [π.A] ⊳ πΣ
pure $ q * valout
check' ctx sg (E e) ty = do
-- if Ψ | Γ ⊢ σ · e ⇒ A' ⊳ Σ
infres <- inferC ctx sg e
-- if Ψ | Γ ⊢ A' <: A
lift $ subtype e.loc ctx infres.type ty
-- then Ψ | Γ ⊢ σ · e ⇐ A ⊳ Σ
pure infres.qout
private covering
checkType' : TyContext d n ->
(subj : Term d n) -> (0 nc : NotClo subj) =>
Maybe Universe -> TC ()
checkType' ctx (TYPE k loc) u = do
-- if 𝓀 < then Ψ | Γ ⊢₀ Type 𝓀 ⇐ Type
case u of
Just l => unless (k < l) $ throw $ BadUniverse loc k l
Nothing => pure ()
checkType' ctx (Pi qty arg res _) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx arg u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
checkTypeScope ctx arg res u
-- then Ψ | Γ ⊢₀ (π·x : A) → B ⇐ Type
checkType' ctx t@(Lam {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Sig fst snd _) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx fst u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
checkTypeScope ctx fst snd u
-- then Ψ | Γ ⊢₀ (x : A) × B ⇐ Type
checkType' ctx t@(Pair {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (W shape body _) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx shape u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
checkTypeScope ctx shape body u
-- then Ψ | Γ ⊢₀ (x : A) ⊲ π.B ⇐ Type
checkType' ctx t@(Sup {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Enum {}) u = pure ()
-- Ψ | Γ ⊢₀ {ts} ⇐ Type
checkType' ctx t@(Tag {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Eq t l r _) u = do
-- if Ψ, i | Γ ⊢₀ A ⇐ Type
case t.body of
Y t' => checkTypeC (extendDim t.name ctx) t' u
N t' => checkTypeC ctx t' u
-- if Ψ | Γ ⊢₀ l ⇐ A0
check0 ctx l t.zero
-- if Ψ | Γ ⊢₀ r ⇐ A1
check0 ctx r t.one
-- then Ψ | Γ ⊢₀ Eq [i ⇒ A] l r ⇐ Type
checkType' ctx t@(DLam {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Nat {}) u = pure ()
checkType' ctx t@(Zero {}) u = throw $ NotType t.loc ctx t
checkType' ctx t@(Succ {}) u = throw $ NotType t.loc ctx t
checkType' ctx (BOX q ty _) u = checkType ctx ty u
checkType' ctx t@(Box {}) u = throw $ NotType t.loc ctx t
checkType' ctx (E e) u = do
-- if Ψ | Γ ⊢₀ E ⇒ Type
infres <- inferC ctx szero e
-- if Ψ | Γ ⊢ Type <: Type 𝓀
case u of
Just u => lift $ subtype e.loc ctx infres.type (TYPE u noLoc)
Nothing => ignore $ expectTYPE !(askAt DEFS) ctx e.loc infres.type
-- then Ψ | Γ ⊢₀ E ⇐ Type 𝓀
private covering
checkTypeScope : TyContext d n -> Term d n ->
ScopeTerm d n -> Maybe Universe -> TC ()
checkTypeScope ctx s (S _ (N body)) u = checkType ctx body u
checkTypeScope ctx s (S [< x] (Y body)) u =
checkType (extendTy Zero x s ctx) body u
private covering
infer' : TyContext d n -> SQty ->
(subj : Elim d n) -> (0 nc : NotClo subj) =>
TC (InferResult' d n)
infer' ctx sg (F x u loc) = do
-- if π·x : A {≔ s} in global context
g <- lookupFree x loc !(askAt DEFS)
-- if σ ≤ π
expectCompatQ loc sg.fst g.qty.fst
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
let Val d = ctx.dimLen; Val n = ctx.termLen
pure $ InfRes {type = displace u g.type, qout = zeroFor ctx}
infer' ctx sg (B i _) =
-- if x : A ∈ Γ
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ (𝟎, σ·x, 𝟎)
pure $ lookupBound sg.fst i ctx.tctx
where
lookupBound : forall n. Qty -> Var n -> TContext d n -> InferResult' d n
lookupBound pi VZ (ctx :< type) =
InfRes {type = weakT 1 type, qout = zeroFor ctx :< pi}
lookupBound pi (VS i) (ctx :< _) =
let InfRes {type, qout} = lookupBound pi i ctx in
InfRes {type = weakT 1 type, qout = qout :< Zero}
infer' ctx sg (App fun arg loc) = do
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
funres <- inferC ctx sg fun
(qty, argty, res) <- expectPi !(askAt DEFS) ctx fun.loc funres.type
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂
argout <- checkC ctx (subjMult sg qty) arg argty
-- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + πΣ₂
pure $ InfRes {
type = sub1 res $ Ann arg argty arg.loc,
qout = funres.qout + qty * argout
}
infer' ctx sg (CasePair pi pair ret body loc) = do
-- no check for 1 ≤ π, since pairs have a single constructor.
-- e.g. at 0 the components are also 0 in the body
--
-- if Ψ | Γ ⊢ σ · pair ⇒ (x : A) × B ⊳ Σ₁
pairres <- inferC ctx sg pair
-- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type
checkTypeC (extendTy Zero ret.name pairres.type ctx) ret.term Nothing
(tfst, tsnd) <- expectSig !(askAt DEFS) ctx pair.loc pairres.type
-- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐
-- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y
-- with ρ₁, ρ₂ ≤ πσ
let [< x, y] = body.names
pisg = pi * sg.fst
bodyctx = extendTyN [< (pisg, x, tfst), (pisg, y, tsnd.term)] ctx
bodyty = substCasePairRet body.names pairres.type ret
bodyout <- checkC bodyctx sg body.term bodyty >>=
popQs loc [< pisg, pisg]
-- then Ψ | Γ ⊢ σ · caseπ ⋯ ⇒ ret[pair/p] ⊳ πΣ₁ + Σ₂
pure $ InfRes {
type = sub1 ret pair,
qout = pi * pairres.qout + bodyout
}
infer' ctx sg (CaseW pi si tree ret body loc) = do
-- if 1 ≤ π
expectCompatQ loc One pi
-- if Ψ | Γ ⊢ σ · e ⇒ ((x : A) ⊲ B) ⊳ Σ₁
InfRes {type = w, qout = qtree} <- inferC ctx sg tree
-- if Ψ | Γ, p : (x : A) ⊲ B ⊢₀ C ⇐ Type
checkTypeC (extendTy Zero ret.name w ctx) ret.term Nothing
(shape, tbody) <- expectW !(askAt DEFS) ctx tree.loc w
-- if Ψ | Γ, x : A, y : 1.B → (x : A) ⊲ B,
-- ih : π.(z : B) → C[y z/p]
-- ⊢ σ · u ⇐ C[((x ⋄ y) ∷ (x : A) ⊲ B)/p]
-- ⊳ Σ₂, π'.x, ς₁.y, ς₂.ih
-- with π' ≤ σπ, ς₂ ≤ σς, ς₁+ς₂ ≤ σπ
let [< x, y, ih] = body.names
-- 1.B → (x : A) ⊲ B
tsub = Arr One tbody.term (weakT 1 w) y.loc
-- y z
ihret = App (BV 1 y.loc) (BVT 0 ih.loc) y.loc
-- π.(z : B) → C[y z/p]
tih = PiY pi !(mnb "z" ih.loc)
(tbody.term // (BV 1 x.loc ::: shift 2))
(ret.term // (ihret ::: shift 3)) ih.loc
sp = sg.fst * pi; ss = sg.fst * si
ctx' = extendTyN [< (sp, x, shape), (sp, y, tsub), (ss, ih, tih)] ctx
qbody' <- checkC ctx' sg body.term $ substCaseWRet body.names w ret
let qbody :< qx :< qy :< qih = qbody'
expectCompatQ x.loc qx sp
expectCompatQ (ih.loc `or` loc) qih ss
expectCompatQ y.loc (qy + qih) sp -- [todo] better error message
-- then Ψ | Γ ⊢ σ · caseπ e return p ⇒ C of { x ⋄ y, ς.ih ⇒ u }
-- ⇒ C[e/p] ⊳ Σ₁+Σ₂
pure $ InfRes {
type = sub1 ret tree,
qout = qtree + qbody
}
infer' ctx sg (CaseEnum pi t ret arms loc) {d, n} = do
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
tres <- inferC ctx sg t
ttags <- expectEnum !(askAt DEFS) ctx t.loc tres.type
-- if 1 ≤ π, OR there is only zero or one option
unless (length (SortedSet.toList ttags) <= 1) $ expectCompatQ loc One pi
-- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type
checkTypeC (extendTy Zero ret.name tres.type ctx) ret.term Nothing
-- if for each "a ⇒ s" in arms,
-- Ψ | Γ ⊢ σ · s ⇐ A[a ∷ {ts}/x] ⊳ Σᵢ
-- with Σ₂ = lubs Σᵢ
let arms = SortedMap.toList arms
let armTags = SortedSet.fromList $ map fst arms
unless (ttags == armTags) $ throw $ BadCaseEnum loc ttags armTags
armres <- for arms $ \(a, s) =>
checkC ctx sg s $ sub1 ret $ Ann (Tag a s.loc) tres.type s.loc
pure $ InfRes {
type = sub1 ret t,
qout = pi * tres.qout + lubs ctx armres
}
infer' ctx sg (CaseNat pi pi' n ret zer suc loc) = do
-- if 1 ≤ π
expectCompatQ loc One pi
-- if Ψ | Γ ⊢ σ · n ⇒ ⊳ Σn
nres <- inferC ctx sg n
let nat = nres.type
expectNat !(askAt DEFS) ctx n.loc nat
-- if Ψ | Γ, n : ⊢₀ A ⇐ Type
checkTypeC (extendTy Zero ret.name nat ctx) ret.term Nothing
-- if Ψ | Γ ⊢ σ · zer ⇐ A[0 ∷ /n] ⊳ Σz
zerout <- checkC ctx sg zer $ sub1 ret $ Ann (Zero zer.loc) nat zer.loc
-- if Ψ | Γ, n : , ih : A ⊢ σ · suc ⇐ A[succ p ∷ /n] ⊳ Σs, ρ₁.p, ρ₂.ih
-- with ρ₂ ≤ π'σ, (ρ₁ + ρ₂) ≤ πσ
let [< p, ih] = suc.names
pisg = pi * sg.fst
sucCtx = extendTyN [< (pisg, p, Nat p.loc), (pi', ih, ret.term)] ctx
sucType = substCaseSuccRet suc.names ret
sucout :< qp :< qih <- checkC sucCtx sg suc.term sucType
expectCompatQ loc qih (pi' * sg.fst)
-- [fixme] better error here
expectCompatQ loc (qp + qih) pisg
-- then Ψ | Γ ⊢ caseπ ⋯ ⇒ A[n] ⊳ πΣn + Σz + ωΣs
pure $ InfRes {
type = sub1 ret n,
qout = pi * nres.qout + zerout + Any * sucout
}
infer' ctx sg (CaseBox pi box ret body loc) = do
-- if Ψ | Γ ⊢ σ · b ⇒ [ρ.A] ⊳ Σ₁
boxres <- inferC ctx sg box
(q, ty) <- expectBOX !(askAt DEFS) ctx box.loc boxres.type
-- if Ψ | Γ, x : [ρ.A] ⊢₀ R ⇐ Type
checkTypeC (extendTy Zero ret.name boxres.type ctx) ret.term Nothing
-- if Ψ | Γ, x : A ⊢ t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x
-- with ς ≤ ρπσ
let qpisg = q * pi * sg.fst
bodyCtx = extendTy qpisg body.name ty ctx
bodyType = substCaseBoxRet body.name ty ret
bodyout <- checkC bodyCtx sg body.term bodyType >>= popQ loc qpisg
-- then Ψ | Γ ⊢ caseπ ⋯ ⇒ R[b/x] ⊳ Σ₁ + Σ₂
pure $ InfRes {
type = sub1 ret box,
qout = boxres.qout + bodyout
}
infer' ctx sg (DApp fun dim loc) = do
-- if Ψ | Γ ⊢ σ · f ⇒ Eq [𝑖 ⇒ A] l r ⊳ Σ
InfRes {type, qout} <- inferC ctx sg fun
ty <- fst <$> expectEq !(askAt DEFS) ctx fun.loc type
-- then Ψ | Γ ⊢ σ · f p ⇒ Ap/𝑖 ⊳ Σ
pure $ InfRes {type = dsub1 ty dim, qout}
infer' ctx sg (Coe ty p q val loc) = do
checkType (extendDim ty.name ctx) ty.term Nothing
qout <- checkC ctx sg val $ dsub1 ty p
pure $ InfRes {type = dsub1 ty q, qout}
infer' ctx sg (Comp ty p q val r (S [< j0] val0) (S [< j1] val1) loc) = do
checkType ctx ty Nothing
qout <- checkC ctx sg val ty
let ty' = dweakT 1 ty; val' = dweakT 1 val; p' = weakD 1 p
ctx0 = extendDim j0 $ eqDim r (K Zero j0.loc) ctx
val0 = val0.term
qout0 <- check ctx0 sg val0 ty'
lift $ equal loc (eqDim (B VZ p.loc) p' ctx0) ty' val0 val'
let ctx1 = extendDim j1 $ eqDim r (K One j1.loc) ctx
val1 = val1.term
qout1 <- check ctx1 sg val1 ty'
lift $ equal loc (eqDim (B VZ p.loc) p' ctx1) ty' val1 val'
let qouts = qout :: catMaybes [toMaybe qout0, toMaybe qout1]
pure $ InfRes {type = ty, qout = lubs ctx qouts}
infer' ctx sg (TypeCase ty ret arms def loc) = do
-- if σ = 0
expectEqualQ loc Zero sg.fst
-- if Ψ, Γ ⊢₀ e ⇒ Type u
u <- expectTYPE !(askAt DEFS) ctx ty.loc . type =<< inferC ctx szero ty
-- if Ψ, Γ ⊢₀ C ⇐ Type (non-dependent return type)
checkTypeC ctx ret Nothing
-- if Ψ, Γ' ⊢₀ A ⇐ C for each rhs A
for_ allKinds $ \k =>
for_ (lookupPrecise k arms) $ \(S names t) =>
check0 (extendTyN (typecaseTel k names u) ctx)
t.term (weakT (arity k) ret)
-- then Ψ, Γ ⊢₀ type-case ⋯ ⇒ C
pure $ InfRes {type = ret, qout = zeroFor ctx}
infer' ctx sg (Ann term type loc) = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx type Nothing
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
qout <- checkC ctx sg term type
-- then Ψ | Γ ⊢ σ · (s ∷ A) ⇒ A ⊳ Σ
pure $ InfRes {type, qout}