add some dim app tests
This commit is contained in:
parent
edeee68cb7
commit
f6bc8cad1f
1 changed files with 59 additions and 22 deletions
|
@ -17,7 +17,7 @@ defGlobals = fromList
|
|||
("b", mkAbstract Any $ FT "B"),
|
||||
("f", mkAbstract Any $ Arr One (FT "A") (FT "A")),
|
||||
("id", mkDef Any (Arr One (FT "A") (FT "A")) (["x"] :\\ BVT 0)),
|
||||
("eq-ab", mkAbstract Zero $ Eq0 (TYPE 0) (FT "A") (FT "B"))]
|
||||
("eq-AB", mkAbstract Zero $ Eq0 (TYPE 0) (FT "A") (FT "B"))]
|
||||
|
||||
parameters (label : String) (act : Lazy (M ()))
|
||||
{default defGlobals globals : Definitions Three}
|
||||
|
@ -185,8 +185,8 @@ tests = "equality & subtyping" :- [
|
|||
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
|
||||
|
||||
testEq "∥ x : [(a ≡ a' : A) ∷ Type 0], y : [ditto] ⊢ x = y" $
|
||||
let ty : forall n. Term Three 0 n
|
||||
:= E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
|
||||
let ty : forall n. Term Three 0 n :=
|
||||
E (Eq0 (FT "A") (FT "a") (FT "a'") :# TYPE 0) in
|
||||
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
|
||||
|
||||
testEq "E ≔ a ≡ a' : A, EE ≔ E ∥ x : EE, y : EE ⊢ x = y"
|
||||
|
@ -209,8 +209,8 @@ tests = "equality & subtyping" :- [
|
|||
testEq "E ≔ a ≡ a' : A ∥ x : (E×E), y : (E×E) ⊢ x = y"
|
||||
{globals = defGlobals `mergeLeft` fromList
|
||||
[("E", mkDef zero (TYPE 0) (Eq0 (FT "A") (FT "a") (FT "a'")))]} $
|
||||
let ty : forall n. Term Three 0 n
|
||||
:= Sig (FT "E") $ S ["_"] $ N $ FT "E" in
|
||||
let ty : forall n. Term Three 0 n :=
|
||||
Sig (FT "E") $ S ["_"] $ N $ FT "E" in
|
||||
equalE (MkTyContext new [< ty, ty]) (BV 0) (BV 1),
|
||||
|
||||
testEq "E ≔ a ≡ a' : A, F ≔ E × E ∥ x : F, y : F ⊢ x = y"
|
||||
|
@ -337,7 +337,44 @@ tests = "equality & subtyping" :- [
|
|||
testEq "id [a] <: a" $ subE empty (F "id" :@ FT "a") (F "a")
|
||||
],
|
||||
|
||||
todo "dim application",
|
||||
"dim application" :- [
|
||||
testEq "eq-AB @0 = eq-AB @0" $
|
||||
equalE empty (F "eq-AB" :% K Zero) (F "eq-AB" :% K Zero),
|
||||
testNeq "eq-AB @0 ≠ eq-AB @1" $
|
||||
equalE empty (F "eq-AB" :% K Zero) (F "eq-AB" :% K One),
|
||||
testEq "𝑖 | ⊢ eq-AB @𝑖 = eq-AB @𝑖" $
|
||||
equalED 1 empty (F "eq-AB" :% BV 0) (F "eq-AB" :% BV 0),
|
||||
testNeq "𝑖 | ⊢ eq-AB @𝑖 ≠ eq-AB @0" $
|
||||
equalED 1 empty (F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
|
||||
testEq "𝑖, 𝑖=0 | ⊢ eq-AB @𝑖 = eq-AB @0" $
|
||||
let ctx = MkTyContext (set (BV 0) (K Zero) new) [<] in
|
||||
equalED 1 ctx (F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
|
||||
testNeq "𝑖, 𝑖=1 | ⊢ eq-AB @𝑖 ≠ eq-AB @0" $
|
||||
let ctx = MkTyContext (set (BV 0) (K One) new) [<] in
|
||||
equalED 1 ctx (F "eq-AB" :% BV 0) (F "eq-AB" :% K Zero),
|
||||
testNeq "𝑖, 𝑗 | ⊢ eq-AB @𝑖 ≠ eq-AB @𝑗" $
|
||||
equalED 2 empty (F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
|
||||
testEq "𝑖, 𝑗, 𝑖=𝑗 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
|
||||
let ctx = MkTyContext (set (BV 0) (BV 1) new) [<] in
|
||||
equalED 2 ctx (F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
|
||||
testNeq "𝑖, 𝑗, 𝑖=0, 𝑗=0 | ⊢ eq-AB @𝑖 ≠ eq-AB @𝑗" $
|
||||
let ctx : TyContext Three 2 0 :=
|
||||
MkTyContext (C [< Just $ K Zero, Just $ K Zero]) [<] in
|
||||
equalED 2 empty (F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
|
||||
testEq "0=1 | ⊢ eq-AB @𝑖 = eq-AB @𝑗" $
|
||||
equalED 2 (MkTyContext ZeroIsOne [<])
|
||||
(F "eq-AB" :% BV 1) (F "eq-AB" :% BV 0),
|
||||
testEq "eq-AB @0 = A" $ equalE empty (F "eq-AB" :% K Zero) (F "A"),
|
||||
testEq "eq-AB @1 = B" $ equalE empty (F "eq-AB" :% K One) (F "B"),
|
||||
testEq "((δ i ⇒ a) ∷ a ≡ a) @0 = a" $
|
||||
equalE empty
|
||||
(((DLam $ SN $ FT "a") :# Eq0 (FT "A") (FT "a") (FT "a")) :% K Zero)
|
||||
(F "a"),
|
||||
testEq "((δ i ⇒ a) ∷ a ≡ a) @0 = ((δ i ⇒ a) ∷ a ≡ a) @1" $
|
||||
equalE empty
|
||||
(((DLam $ SN $ FT "a") :# Eq0 (FT "A") (FT "a") (FT "a")) :% K Zero)
|
||||
(((DLam $ SN $ FT "a") :# Eq0 (FT "A") (FT "a") (FT "a")) :% K One)
|
||||
],
|
||||
|
||||
"annotation" :- [
|
||||
testEq "(λ x ⇒ f [x]) ∷ A ⊸ A = [f] ∷ A ⊸ A" $
|
||||
|
@ -361,25 +398,25 @@ tests = "equality & subtyping" :- [
|
|||
],
|
||||
|
||||
"elim d-closure" :- [
|
||||
note "0·eq-ab : (A ≡ B : ★₀)",
|
||||
testEq "(eq-ab #0)‹𝟎› = eq-ab 𝟎" $
|
||||
note "0·eq-AB : (A ≡ B : ★₀)",
|
||||
testEq "(eq-AB #0)‹𝟎› = eq-AB 𝟎" $
|
||||
equalED 1 empty
|
||||
(DCloE (F "eq-ab" :% BV 0) (K Zero ::: id))
|
||||
(F "eq-ab" :% K Zero),
|
||||
testEq "(eq-ab #0)‹𝟎› = A" $
|
||||
equalED 1 empty (DCloE (F "eq-ab" :% BV 0) (K Zero ::: id)) (F "A"),
|
||||
testEq "(eq-ab #0)‹𝟏› = B" $
|
||||
equalED 1 empty (DCloE (F "eq-ab" :% BV 0) (K One ::: id)) (F "B"),
|
||||
testNeq "(eq-ab #0)‹𝟏› ≠ A" $
|
||||
equalED 1 empty (DCloE (F "eq-ab" :% BV 0) (K One ::: id)) (F "A"),
|
||||
testEq "(eq-ab #0)‹#0,𝟎› = (eq-ab #0)" $
|
||||
(DCloE (F "eq-AB" :% BV 0) (K Zero ::: id))
|
||||
(F "eq-AB" :% K Zero),
|
||||
testEq "(eq-AB #0)‹𝟎› = A" $
|
||||
equalED 1 empty (DCloE (F "eq-AB" :% BV 0) (K Zero ::: id)) (F "A"),
|
||||
testEq "(eq-AB #0)‹𝟏› = B" $
|
||||
equalED 1 empty (DCloE (F "eq-AB" :% BV 0) (K One ::: id)) (F "B"),
|
||||
testNeq "(eq-AB #0)‹𝟏› ≠ A" $
|
||||
equalED 1 empty (DCloE (F "eq-AB" :% BV 0) (K One ::: id)) (F "A"),
|
||||
testEq "(eq-AB #0)‹#0,𝟎› = (eq-AB #0)" $
|
||||
equalED 2 empty
|
||||
(DCloE (F "eq-ab" :% BV 0) (BV 0 ::: K Zero ::: id))
|
||||
(F "eq-ab" :% BV 0),
|
||||
testNeq "(eq-ab #0)‹𝟎› ≠ (eq-ab 𝟎)" $
|
||||
(DCloE (F "eq-AB" :% BV 0) (BV 0 ::: K Zero ::: id))
|
||||
(F "eq-AB" :% BV 0),
|
||||
testNeq "(eq-AB #0)‹𝟎› ≠ (eq-AB 𝟎)" $
|
||||
equalED 2 empty
|
||||
(DCloE (F "eq-ab" :% BV 0) (BV 0 ::: K Zero ::: id))
|
||||
(F "eq-ab" :% K Zero),
|
||||
(DCloE (F "eq-AB" :% BV 0) (BV 0 ::: K Zero ::: id))
|
||||
(F "eq-AB" :% K Zero),
|
||||
testEq "#0‹𝟎› = #0 # term and dim vars distinct" $
|
||||
equalED 1 (MkTyContext new [< FT "A"])
|
||||
(DCloE (BV 0) (K Zero ::: id)) (BV 0),
|
||||
|
|
Loading…
Reference in a new issue