switch syntax to codb

This commit is contained in:
rhiannon morris 2023-06-05 16:40:55 +02:00
parent 92870fe716
commit 9e702dd03d

View file

@ -1,5 +1,6 @@
module Quox.Syntax.Term.Base
import public Quox.Thin
import public Quox.Syntax.Var
import public Quox.Syntax.Shift
import public Quox.Syntax.Subst
@ -18,9 +19,6 @@ import Data.Maybe
import Data.Nat
import public Data.So
import Data.String
import public Data.SortedMap
import public Data.SortedMap.Dependent
import public Data.SortedSet
import Derive.Prelude
%default total
@ -46,345 +44,301 @@ TagVal : Type
TagVal = String
||| type-checkable terms, which consists of types and constructor forms.
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export
data ScopedBody : Nat -> (Nat -> Type) -> Nat -> Type where
Y : (body : f (s + n)) -> ScopedBody s f n
N : (body : f n) -> ScopedBody s f n
%name ScopedBody body
data Term : (d, n : Nat) -> Type
%name Term s, t, r
export %inline %hint
EqScopedBody : (forall n. Eq (f n)) => Eq (ScopedBody s f n)
EqScopedBody = deriveEq
export %inline %hint
ShowScopedBody : (forall n. Show (f n)) => Show (ScopedBody s f n)
ShowScopedBody = deriveShow
||| a scoped term with names
||| inferrable terms, which consists of elimination forms like application and
||| `case` (as well as other terms with an annotation)
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export
record Scoped (s : Nat) (f : Nat -> Type) (n : Nat) where
constructor S
names : BContext s
body : ScopedBody s f n
%name Scoped body
export %inline
(forall n. Eq (f n)) => Eq (Scoped s f n) where
s == t = s.body == t.body
export %inline %hint
ShowScoped : (forall n. Show (f n)) => Show (Scoped s f n)
ShowScoped = deriveShow
data Elim : (d, n : Nat) -> Type
%name Elim e, f
infixl 8 :#
infixl 9 :@, :%
mutual
public export
TSubst : TSubstLike
TSubst d = Subst $ \n => Elim d n
ScopeTermN : Nat -> TermLike
ScopeTermN s d n = ScopedN s (\n => Term d n) n
||| first argument `d` is dimension scope size;
||| second `n` is term scope size
public export
data Term : (d, n : Nat) -> Type where
DScopeTermN : Nat -> TermLike
DScopeTermN s d n = ScopedN s (\d => Term d n) d
public export
ScopeTerm : TermLike
ScopeTerm = ScopeTermN 1
public export
DScopeTerm : TermLike
DScopeTerm = DScopeTermN 1
public export
TermT : TermLike
TermT = Thinned2 (\d, n => Term d n)
public export
ElimT : TermLike
ElimT = Thinned2 (\d, n => Elim d n)
public export
DimArg : TermLike
DimArg d n = Dim d
data Term where
||| type of types
TYPE : (l : Universe) -> (loc : Loc) -> Term d n
TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0
||| function type
Pi : (qty : Qty) -> (arg : Term d n) ->
(res : ScopeTerm d n) -> (loc : Loc) -> Term d n
||| function term
Lam : (body : ScopeTerm d n) -> (loc : Loc) -> Term d n
Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
||| function value
Lam : ScopeTerm d n -> Loc -> Term d n
||| pair type
Sig : (fst : Term d n) -> (snd : ScopeTerm d n) -> (loc : Loc) -> Term d n
Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
||| pair value
Pair : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
Pair : Subterms [Term, Term] d n -> Loc -> Term d n
||| enumeration type
Enum : (cases : SortedSet TagVal) -> (loc : Loc) -> Term d n
||| enumeration value
Tag : (tag : TagVal) -> (loc : Loc) -> Term d n
||| enum type
Enum : List TagVal -> Loc -> Term 0 0
||| enum value
Tag : TagVal -> Loc -> Term 0 0
||| equality type
Eq : (ty : DScopeTerm d n) -> (l, r : Term d n) -> (loc : Loc) -> Term d n
||| equality term
DLam : (body : DScopeTerm d n) -> (loc : Loc) -> Term d n
Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n
||| equality value
DLam : DScopeTerm d n -> Loc -> Term d n
||| natural numbers (temporary until 𝐖 gets added)
Nat : (loc : Loc) -> Term d n
-- [todo] can these be elims?
Zero : (loc : Loc) -> Term d n
Succ : (p : Term d n) -> (loc : Loc) -> Term d n
Nat : Loc -> Term 0 0
Zero : Loc -> Term 0 0
Succ : Term d n -> Loc -> Term 0 0
||| "box" (package a value up with a certain quantity)
BOX : (qty : Qty) -> (ty : Term d n) -> (loc : Loc) -> Term d n
Box : (val : Term d n) -> (loc : Loc) -> Term d n
||| package a value with a quantity
||| e.g. a value of [ω. A], when unpacked, can be used ω times,
||| even if the box itself is linear
BOX : Qty -> Term d n -> Loc -> Term d n
Box : Term d n -> Loc -> Term d n
||| elimination
E : (e : Elim d n) -> Term d n
E : Elim d n -> Term d n
||| term closure/suspended substitution
CloT : WithSubst (Term d) (Elim d) n -> Term d n
||| dimension closure/suspended substitution
DCloT : WithSubst (\d => Term d n) Dim d -> Term d n
%name Term s, t, r
||| first argument `d` is dimension scope size, second `n` is term scope size
public export
data Elim : (d, n : Nat) -> Type where
data Elim where
||| free variable, possibly with a displacement (see @crude, or @mugen for a
||| more abstract and formalised take)
|||
||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂
F : (x : Name) -> (u : Universe) -> (loc : Loc) -> Elim d n
F : Name -> Universe -> Loc -> Elim 0 0
||| bound variable
B : (i : Var n) -> (loc : Loc) -> Elim d n
B : Loc -> Elim 0 1
||| term application
App : (fun : Elim d n) -> (arg : Term d n) -> (loc : Loc) -> Elim d n
App : Subterms [Elim, Term] d n -> Loc -> Elim d n
||| pair destruction
|||
||| `CasePair 𝜋 𝑒 ([𝑟], 𝐴) ([𝑥, 𝑦], 𝑡)` is
||| `𝐜𝐚𝐬𝐞 𝜋 · 𝑒 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟𝐴 𝐨𝐟 { (𝑥, 𝑦) ⇒ 𝑡 }`
CasePair : (qty : Qty) -> (pair : Elim d n) ->
(ret : ScopeTerm d n) ->
(body : ScopeTermN 2 d n) ->
(loc : Loc) ->
Elim d n
||| pair match
||| - the subterms are, in order: [head, return type, body]
||| - the quantity is that of the head, and since pairs only have one
||| constructor, can be 0
CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n ->
Loc -> Elim d n
||| enum matching
CaseEnum : (qty : Qty) -> (tag : Elim d n) ->
(ret : ScopeTerm d n) ->
(arms : CaseEnumArms d n) ->
(loc : Loc) ->
Elim d n
||| enum match
CaseEnum : Qty -> (arms : List TagVal) ->
Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n ->
Loc -> Elim d n
||| nat matching
CaseNat : (qty, qtyIH : Qty) -> (nat : Elim d n) ->
(ret : ScopeTerm d n) ->
(zero : Term d n) ->
(succ : ScopeTermN 2 d n) ->
(loc : Loc) ->
Elim d n
||| nat match
CaseNat : Qty -> Qty ->
Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n ->
Loc -> Elim d n
||| unboxing
CaseBox : (qty : Qty) -> (box : Elim d n) ->
(ret : ScopeTerm d n) ->
(body : ScopeTerm d n) ->
(loc : Loc) ->
Elim d n
||| box match
CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n
||| dim application
DApp : (fun : Elim d n) -> (arg : Dim d) -> (loc : Loc) -> Elim d n
DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n
||| type-annotated term
Ann : (tm, ty : Term d n) -> (loc : Loc) -> Elim d n
Ann : Subterms [Term, Term] d n -> Loc -> Elim d n
||| coerce a value along a type equality, or show its coherence
||| [@xtt; §2.1.1]
Coe : (ty : DScopeTerm d n) -> (p, q : Dim d) ->
(val : Term d n) -> (loc : Loc) -> Elim d n
Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n ->
Loc -> Elim d n
||| "generalised composition" [@xtt; §2.1.2]
Comp : (ty : Term d n) -> (p, q : Dim d) ->
(val : Term d n) -> (r : Dim d) ->
(zero, one : DScopeTerm d n) -> (loc : Loc) -> Elim d n
Comp : Subterms [Term, DimArg, DimArg, Term,
DimArg, DScopeTerm, DScopeTerm] d n ->
Loc -> Elim d n
||| match on types. needed for b.s. of coercions [@xtt; §2.2]
TypeCase : (ty : Elim d n) -> (ret : Term d n) ->
(arms : TypeCaseArms d n) -> (def : Term d n) ->
(loc : Loc) ->
Elim d n
TypeCase : Subterms [Elim, Term, -- head, type
Term, -- ★
ScopeTermN 2, -- pi
ScopeTermN 2, -- sig
Term, -- enum
ScopeTermN 5, -- eq
Term, -- nat
ScopeTerm -- box
] d n -> Loc -> Elim d n
||| term closure/suspended substitution
CloE : WithSubst (Elim d) (Elim d) n -> Elim d n
||| dimension closure/suspended substitution
DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n
%name Elim e, f
public export
CaseEnumArms : TermLike
CaseEnumArms d n = SortedMap TagVal (Term d n)
public export
TypeCaseArms : TermLike
TypeCaseArms d n = SortedDMap TyConKind (\k => TypeCaseArmBody k d n)
public export
TypeCaseArm : TermLike
TypeCaseArm d n = (k ** TypeCaseArmBody k d n)
public export
TypeCaseArmBody : TyConKind -> TermLike
TypeCaseArmBody k = ScopeTermN (arity k)
public export
ScopeTermN, DScopeTermN : Nat -> TermLike
ScopeTermN s d n = Scoped s (Term d) n
DScopeTermN s d n = Scoped s (\d => Term d n) d
-- this kills the idris ☹
-- export %hint
-- EqTerm : Eq (Term d n)
public export
ScopeTerm, DScopeTerm : TermLike
ScopeTerm = ScopeTermN 1
DScopeTerm = DScopeTermN 1
-- export %hint
-- EqElim : Eq (Elim d n)
mutual
export %hint
EqTerm : Eq (Term d n)
EqTerm = assert_total {a = Eq (Term d n)} deriveEq
-- EqTerm = deriveEq
-- EqElim = deriveEq
export %hint
EqElim : Eq (Elim d n)
EqElim = assert_total {a = Eq (Elim d n)} deriveEq
mutual
export %hint
ShowTerm : Show (Term d n)
ShowTerm = assert_total {a = Show (Term d n)} deriveShow
-- mutual
-- export %hint
-- ShowTerm : Show (Term d n)
-- ShowTerm = assert_total {a = Show (Term d n)} deriveShow
export %hint
ShowElim : Show (Elim d n)
ShowElim = assert_total {a = Show (Elim d n)} deriveShow
-- export %hint
-- ShowElim : Show (Elim d n)
-- ShowElim = assert_total {a = Show (Elim d n)} deriveShow
||| scope which ignores all its binders
public export %inline
SN : {s : Nat} -> f n -> Scoped s f n
SN = S (replicate s $ BN Unused noLoc) . N
-- ||| scope which ignores all its binders
-- public export %inline
-- SN : {s : Nat} -> f n -> Scoped s f n
-- SN = S (replicate s $ BN Unused noLoc) . N
||| scope which uses its binders
public export %inline
SY : BContext s -> f (s + n) -> Scoped s f n
SY ns = S ns . Y
-- ||| scope which uses its binders
-- public export %inline
-- SY : BContext s -> f (s + n) -> Scoped s f n
-- SY ns = S ns . Y
public export %inline
name : Scoped 1 f n -> BindName
name (S [< x] _) = x
-- public export %inline
-- name : Scoped 1 f n -> BindName
-- name (S [< x] _) = x
public export %inline
(.name) : Scoped 1 f n -> BindName
s.name = name s
-- public export %inline
-- (.name) : Scoped 1 f n -> BindName
-- s.name = name s
||| more convenient Pi
public export %inline
PiY : (qty : Qty) -> (x : BindName) ->
(arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n
PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
-- ||| more convenient Pi
-- public export %inline
-- PiY : (qty : Qty) -> (x : BindName) ->
-- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n
-- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
||| more convenient Lam
public export %inline
LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n
LamY {x, body, loc} = Lam {body = SY [< x] body, loc}
-- ||| more convenient Lam
-- public export %inline
-- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n
-- LamY {x, body, loc} = Lam {body = SY [< x] body, loc}
public export %inline
LamN : (body : Term d n) -> (loc : Loc) -> Term d n
LamN {body, loc} = Lam {body = SN body, loc}
-- public export %inline
-- LamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- LamN {body, loc} = Lam {body = SN body, loc}
||| non dependent function type
public export %inline
Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n
Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc}
-- ||| non dependent function type
-- public export %inline
-- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n
-- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc}
||| more convenient Sig
public export %inline
SigY : (x : BindName) -> (fst : Term d n) ->
(snd : Term d (S n)) -> (loc : Loc) -> Term d n
SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc}
-- ||| more convenient Sig
-- public export %inline
-- SigY : (x : BindName) -> (fst : Term d n) ->
-- (snd : Term d (S n)) -> (loc : Loc) -> Term d n
-- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc}
||| non dependent pair type
public export %inline
And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
-- ||| non dependent pair type
-- public export %inline
-- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
-- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
||| more convenient Eq
public export %inline
EqY : (i : BindName) -> (ty : Term (S d) n) ->
(l, r : Term d n) -> (loc : Loc) -> Term d n
EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc}
-- ||| more convenient Eq
-- public export %inline
-- EqY : (i : BindName) -> (ty : Term (S d) n) ->
-- (l, r : Term d n) -> (loc : Loc) -> Term d n
-- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc}
||| more convenient DLam
public export %inline
DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n
DLamY {i, body, loc} = DLam {body = SY [< i] body, loc}
-- ||| more convenient DLam
-- public export %inline
-- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n
-- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc}
public export %inline
DLamN : (body : Term d n) -> (loc : Loc) -> Term d n
DLamN {body, loc} = DLam {body = SN body, loc}
-- public export %inline
-- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- DLamN {body, loc} = DLam {body = SN body, loc}
-- ||| non dependent equality type
-- public export %inline
-- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
-- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
||| non dependent equality type
public export %inline
Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
||| same as `F` but as a term
public export %inline
FT : Name -> Universe -> Loc -> Term d n
FT : Name -> Universe -> Loc -> Term 0 0
FT x u loc = E $ F x u loc
||| abbreviation for a bound variable like `BV 4` instead of
||| `B (VS (VS (VS (VS VZ))))`
public export %inline
BV : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Elim d n
BV i loc = B (V i) loc
BV : (i : Fin n) -> (loc : Loc) -> ElimT d n
BV i loc = Th2 zero (one' i) $ B loc
||| same as `BV` but as a term
public export %inline
BVT : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Term d n
BVT i loc = E $ BV i loc
BVT : (i : Fin n) -> (loc : Loc) -> TermT d n
BVT i loc = Th2 zero (one' i) $ E $ B loc
public export
makeNat : Nat -> Loc -> Term d n
makeNat : Nat -> Loc -> Term 0 0
makeNat 0 loc = Zero loc
makeNat (S k) loc = Succ (makeNat k loc) loc
public export %inline
enum : List TagVal -> Loc -> Term d n
enum ts loc = Enum (SortedSet.fromList ts) loc
public export %inline
typeCase : Elim d n -> Term d n ->
List (TypeCaseArm d n) -> Term d n -> Loc -> Elim d n
typeCase ty ret arms def loc = TypeCase ty ret (fromList arms) def loc
public export %inline
typeCase1Y : Elim d n -> Term d n ->
(k : TyConKind) -> BContext (arity k) -> Term d (arity k + n) ->
(loc : Loc) ->
{default (Nat loc) def : Term d n} ->
Elim d n
typeCase1Y ty ret k ns body loc = typeCase ty ret [(k ** SY ns body)] def loc
export
Located (Elim d n) where
(F _ _ loc).loc = loc
(B _ loc).loc = loc
(App _ _ loc).loc = loc
(CasePair _ _ _ _ loc).loc = loc
(CaseEnum _ _ _ _ loc).loc = loc
(CaseNat _ _ _ _ _ _ loc).loc = loc
(CaseBox _ _ _ _ loc).loc = loc
(DApp _ _ loc).loc = loc
(Ann _ _ loc).loc = loc
(Coe _ _ _ _ loc).loc = loc
(Comp _ _ _ _ _ _ _ loc).loc = loc
(TypeCase _ _ _ _ loc).loc = loc
(B loc).loc = loc
(App _ loc).loc = loc
(CasePair _ _ loc).loc = loc
(CaseEnum _ _ _ loc).loc = loc
(CaseNat _ _ _ loc).loc = loc
(CaseBox _ _ loc).loc = loc
(DApp _ loc).loc = loc
(Ann _ loc).loc = loc
(Coe _ loc).loc = loc
(Comp _ loc).loc = loc
(TypeCase _ loc).loc = loc
(CloE (Sub e _)).loc = e.loc
(DCloE (Sub e _)).loc = e.loc
export
Located (Term d n) where
(TYPE _ loc).loc = loc
(Pi _ _ _ loc).loc = loc
(Pi _ _ loc).loc = loc
(Lam _ loc).loc = loc
(Sig _ _ loc).loc = loc
(Pair _ _ loc).loc = loc
(Sig _ loc).loc = loc
(Pair _ loc).loc = loc
(Enum _ loc).loc = loc
(Tag _ loc).loc = loc
(Eq _ _ _ loc).loc = loc
(Eq _ loc).loc = loc
(DLam _ loc).loc = loc
(Nat loc).loc = loc
(Zero loc).loc = loc
@ -395,54 +349,34 @@ Located (Term d n) where
(CloT (Sub t _)).loc = t.loc
(DCloT (Sub t _)).loc = t.loc
export
Located1 f => Located (ScopedBody s f n) where
(Y t).loc = t.loc
(N t).loc = t.loc
export
Located1 f => Located (Scoped s f n) where
t.loc = t.body.loc
export
Relocatable (Elim d n) where
setLoc loc (F x u _) = F x u loc
setLoc loc (B i _) = B i loc
setLoc loc (App fun arg _) = App fun arg loc
setLoc loc (CasePair qty pair ret body _) =
CasePair qty pair ret body loc
setLoc loc (CaseEnum qty tag ret arms _) =
CaseEnum qty tag ret arms loc
setLoc loc (CaseNat qty qtyIH nat ret zero succ _) =
CaseNat qty qtyIH nat ret zero succ loc
setLoc loc (CaseBox qty box ret body _) =
CaseBox qty box ret body loc
setLoc loc (DApp fun arg _) =
DApp fun arg loc
setLoc loc (Ann tm ty _) =
Ann tm ty loc
setLoc loc (Coe ty p q val _) =
Coe ty p q val loc
setLoc loc (Comp ty p q val r zero one _) =
Comp ty p q val r zero one loc
setLoc loc (TypeCase ty ret arms def _) =
TypeCase ty ret arms def loc
setLoc loc (CloE (Sub term subst)) =
CloE $ Sub (setLoc loc term) subst
setLoc loc (DCloE (Sub term subst)) =
DCloE $ Sub (setLoc loc term) subst
setLoc loc (B _) = B loc
setLoc loc (App ts _) = App ts loc
setLoc loc (CasePair qty ts _) = CasePair qty ts loc
setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc
setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc
setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc
setLoc loc (DApp ts _) = DApp ts loc
setLoc loc (Ann ts _) = Ann ts loc
setLoc loc (Coe ts _) = Coe ts loc
setLoc loc (Comp ts _) = Comp ts loc
setLoc loc (TypeCase ts _) = TypeCase ts loc
setLoc loc (CloE (Sub term subst)) = CloE $ Sub (setLoc loc term) subst
setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst
export
Relocatable (Term d n) where
setLoc loc (TYPE l _) = TYPE l loc
setLoc loc (Pi qty arg res _) = Pi qty arg res loc
setLoc loc (Pi qty ts _) = Pi qty ts loc
setLoc loc (Lam body _) = Lam body loc
setLoc loc (Sig fst snd _) = Sig fst snd loc
setLoc loc (Pair fst snd _) = Pair fst snd loc
setLoc loc (Sig ts _) = Sig ts loc
setLoc loc (Pair ts _) = Pair ts loc
setLoc loc (Enum cases _) = Enum cases loc
setLoc loc (Tag tag _) = Tag tag loc
setLoc loc (Eq ty l r _) = Eq ty l r loc
setLoc loc (Eq ts _) = Eq ts loc
setLoc loc (DLam body _) = DLam body loc
setLoc loc (Nat _) = Nat loc
setLoc loc (Zero _) = Zero loc
@ -452,12 +386,3 @@ Relocatable (Term d n) where
setLoc loc (E e) = E $ setLoc loc e
setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst
setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst
export
Relocatable1 f => Relocatable (ScopedBody s f n) where
setLoc loc (Y body) = Y $ setLoc loc body
setLoc loc (N body) = N $ setLoc loc body
export
Relocatable1 f => Relocatable (Scoped s f n) where
setLoc loc (S names body) = S (setLoc loc <$> names) (setLoc loc body)