From 9e702dd03d9ef0d2eefcddc0dc22aba67eee7a40 Mon Sep 17 00:00:00 2001 From: rhiannon morris Date: Mon, 5 Jun 2023 16:40:55 +0200 Subject: [PATCH] switch syntax to codb --- lib/Quox/Syntax/Term/Base.idr | 619 +++++++++++++++------------------- 1 file changed, 272 insertions(+), 347 deletions(-) diff --git a/lib/Quox/Syntax/Term/Base.idr b/lib/Quox/Syntax/Term/Base.idr index 5682c73..0ff7b3b 100644 --- a/lib/Quox/Syntax/Term/Base.idr +++ b/lib/Quox/Syntax/Term/Base.idr @@ -1,5 +1,6 @@ module Quox.Syntax.Term.Base +import public Quox.Thin import public Quox.Syntax.Var import public Quox.Syntax.Shift import public Quox.Syntax.Subst @@ -18,9 +19,6 @@ import Data.Maybe import Data.Nat import public Data.So import Data.String -import public Data.SortedMap -import public Data.SortedMap.Dependent -import public Data.SortedSet import Derive.Prelude %default total @@ -46,345 +44,301 @@ TagVal : Type TagVal = String +||| type-checkable terms, which consists of types and constructor forms. +||| +||| first argument `d` is dimension scope size; second `n` is term scope size public export -data ScopedBody : Nat -> (Nat -> Type) -> Nat -> Type where - Y : (body : f (s + n)) -> ScopedBody s f n - N : (body : f n) -> ScopedBody s f n -%name ScopedBody body +data Term : (d, n : Nat) -> Type +%name Term s, t, r -export %inline %hint -EqScopedBody : (forall n. Eq (f n)) => Eq (ScopedBody s f n) -EqScopedBody = deriveEq - -export %inline %hint -ShowScopedBody : (forall n. Show (f n)) => Show (ScopedBody s f n) -ShowScopedBody = deriveShow - -||| a scoped term with names +||| inferrable terms, which consists of elimination forms like application and +||| `case` (as well as other terms with an annotation) +||| +||| first argument `d` is dimension scope size; second `n` is term scope size public export -record Scoped (s : Nat) (f : Nat -> Type) (n : Nat) where - constructor S - names : BContext s - body : ScopedBody s f n -%name Scoped body - -export %inline -(forall n. Eq (f n)) => Eq (Scoped s f n) where - s == t = s.body == t.body - -export %inline %hint -ShowScoped : (forall n. Show (f n)) => Show (Scoped s f n) -ShowScoped = deriveShow +data Elim : (d, n : Nat) -> Type +%name Elim e, f -infixl 8 :# -infixl 9 :@, :% -mutual - public export - TSubst : TSubstLike - TSubst d = Subst $ \n => Elim d n +public export +ScopeTermN : Nat -> TermLike +ScopeTermN s d n = ScopedN s (\n => Term d n) n - ||| first argument `d` is dimension scope size; - ||| second `n` is term scope size - public export - data Term : (d, n : Nat) -> Type where - ||| type of types - TYPE : (l : Universe) -> (loc : Loc) -> Term d n +public export +DScopeTermN : Nat -> TermLike +DScopeTermN s d n = ScopedN s (\d => Term d n) d - ||| function type - Pi : (qty : Qty) -> (arg : Term d n) -> - (res : ScopeTerm d n) -> (loc : Loc) -> Term d n - ||| function term - Lam : (body : ScopeTerm d n) -> (loc : Loc) -> Term d n +public export +ScopeTerm : TermLike +ScopeTerm = ScopeTermN 1 - ||| pair type - Sig : (fst : Term d n) -> (snd : ScopeTerm d n) -> (loc : Loc) -> Term d n - ||| pair value - Pair : (fst, snd : Term d n) -> (loc : Loc) -> Term d n - - ||| enumeration type - Enum : (cases : SortedSet TagVal) -> (loc : Loc) -> Term d n - ||| enumeration value - Tag : (tag : TagVal) -> (loc : Loc) -> Term d n - - ||| equality type - Eq : (ty : DScopeTerm d n) -> (l, r : Term d n) -> (loc : Loc) -> Term d n - ||| equality term - DLam : (body : DScopeTerm d n) -> (loc : Loc) -> Term d n - - ||| natural numbers (temporary until ๐– gets added) - Nat : (loc : Loc) -> Term d n - -- [todo] can these be elims? - Zero : (loc : Loc) -> Term d n - Succ : (p : Term d n) -> (loc : Loc) -> Term d n - - ||| "box" (package a value up with a certain quantity) - BOX : (qty : Qty) -> (ty : Term d n) -> (loc : Loc) -> Term d n - Box : (val : Term d n) -> (loc : Loc) -> Term d n - - ||| elimination - E : (e : Elim d n) -> Term d n - - ||| term closure/suspended substitution - CloT : WithSubst (Term d) (Elim d) n -> Term d n - ||| dimension closure/suspended substitution - DCloT : WithSubst (\d => Term d n) Dim d -> Term d n - %name Term s, t, r - - ||| first argument `d` is dimension scope size, second `n` is term scope size - public export - data Elim : (d, n : Nat) -> Type where - ||| free variable, possibly with a displacement (see @crude, or @mugen for a - ||| more abstract and formalised take) - ||| - ||| e.g. if f : โ˜…โ‚€ โ†’ โ˜…โ‚, then fยน : โ˜…โ‚ โ†’ โ˜…โ‚‚ - F : (x : Name) -> (u : Universe) -> (loc : Loc) -> Elim d n - ||| bound variable - B : (i : Var n) -> (loc : Loc) -> Elim d n - - ||| term application - App : (fun : Elim d n) -> (arg : Term d n) -> (loc : Loc) -> Elim d n - - ||| pair destruction - ||| - ||| `CasePair ๐œ‹ ๐‘’ ([๐‘Ÿ], ๐ด) ([๐‘ฅ, ๐‘ฆ], ๐‘ก)` is - ||| `๐œ๐š๐ฌ๐ž ๐œ‹ ยท ๐‘’ ๐ซ๐ž๐ญ๐ฎ๐ซ๐ง ๐‘Ÿ โ‡’ ๐ด ๐จ๐Ÿ { (๐‘ฅ, ๐‘ฆ) โ‡’ ๐‘ก }` - CasePair : (qty : Qty) -> (pair : Elim d n) -> - (ret : ScopeTerm d n) -> - (body : ScopeTermN 2 d n) -> - (loc : Loc) -> - Elim d n - - ||| enum matching - CaseEnum : (qty : Qty) -> (tag : Elim d n) -> - (ret : ScopeTerm d n) -> - (arms : CaseEnumArms d n) -> - (loc : Loc) -> - Elim d n - - ||| nat matching - CaseNat : (qty, qtyIH : Qty) -> (nat : Elim d n) -> - (ret : ScopeTerm d n) -> - (zero : Term d n) -> - (succ : ScopeTermN 2 d n) -> - (loc : Loc) -> - Elim d n - - ||| unboxing - CaseBox : (qty : Qty) -> (box : Elim d n) -> - (ret : ScopeTerm d n) -> - (body : ScopeTerm d n) -> - (loc : Loc) -> - Elim d n - - ||| dim application - DApp : (fun : Elim d n) -> (arg : Dim d) -> (loc : Loc) -> Elim d n - - ||| type-annotated term - Ann : (tm, ty : Term d n) -> (loc : Loc) -> Elim d n - - ||| coerce a value along a type equality, or show its coherence - ||| [@xtt; ยง2.1.1] - Coe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> - (val : Term d n) -> (loc : Loc) -> Elim d n - - ||| "generalised composition" [@xtt; ยง2.1.2] - Comp : (ty : Term d n) -> (p, q : Dim d) -> - (val : Term d n) -> (r : Dim d) -> - (zero, one : DScopeTerm d n) -> (loc : Loc) -> Elim d n - - ||| match on types. needed for b.s. of coercions [@xtt; ยง2.2] - TypeCase : (ty : Elim d n) -> (ret : Term d n) -> - (arms : TypeCaseArms d n) -> (def : Term d n) -> - (loc : Loc) -> - Elim d n - - ||| term closure/suspended substitution - CloE : WithSubst (Elim d) (Elim d) n -> Elim d n - ||| dimension closure/suspended substitution - DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n - %name Elim e, f - - public export - CaseEnumArms : TermLike - CaseEnumArms d n = SortedMap TagVal (Term d n) - - public export - TypeCaseArms : TermLike - TypeCaseArms d n = SortedDMap TyConKind (\k => TypeCaseArmBody k d n) - - public export - TypeCaseArm : TermLike - TypeCaseArm d n = (k ** TypeCaseArmBody k d n) - - public export - TypeCaseArmBody : TyConKind -> TermLike - TypeCaseArmBody k = ScopeTermN (arity k) +public export +DScopeTerm : TermLike +DScopeTerm = DScopeTermN 1 - public export - ScopeTermN, DScopeTermN : Nat -> TermLike - ScopeTermN s d n = Scoped s (Term d) n - DScopeTermN s d n = Scoped s (\d => Term d n) d +public export +TermT : TermLike +TermT = Thinned2 (\d, n => Term d n) - public export - ScopeTerm, DScopeTerm : TermLike - ScopeTerm = ScopeTermN 1 - DScopeTerm = DScopeTermN 1 +public export +ElimT : TermLike +ElimT = Thinned2 (\d, n => Elim d n) -mutual - export %hint - EqTerm : Eq (Term d n) - EqTerm = assert_total {a = Eq (Term d n)} deriveEq - export %hint - EqElim : Eq (Elim d n) - EqElim = assert_total {a = Eq (Elim d n)} deriveEq +public export +DimArg : TermLike +DimArg d n = Dim d -mutual - export %hint - ShowTerm : Show (Term d n) - ShowTerm = assert_total {a = Show (Term d n)} deriveShow - export %hint - ShowElim : Show (Elim d n) - ShowElim = assert_total {a = Show (Elim d n)} deriveShow +data Term where + ||| type of types + TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0 -||| scope which ignores all its binders -public export %inline -SN : {s : Nat} -> f n -> Scoped s f n -SN = S (replicate s $ BN Unused noLoc) . N + ||| function type + Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n + ||| function value + Lam : ScopeTerm d n -> Loc -> Term d n -||| scope which uses its binders -public export %inline -SY : BContext s -> f (s + n) -> Scoped s f n -SY ns = S ns . Y + ||| pair type + Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n + ||| pair value + Pair : Subterms [Term, Term] d n -> Loc -> Term d n -public export %inline -name : Scoped 1 f n -> BindName -name (S [< x] _) = x + ||| enum type + Enum : List TagVal -> Loc -> Term 0 0 + ||| enum value + Tag : TagVal -> Loc -> Term 0 0 -public export %inline -(.name) : Scoped 1 f n -> BindName -s.name = name s + ||| equality type + Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n + ||| equality value + DLam : DScopeTerm d n -> Loc -> Term d n -||| more convenient Pi -public export %inline -PiY : (qty : Qty) -> (x : BindName) -> - (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n -PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc} + ||| natural numbers (temporary until ๐– gets added) + Nat : Loc -> Term 0 0 + Zero : Loc -> Term 0 0 + Succ : Term d n -> Loc -> Term 0 0 -||| more convenient Lam -public export %inline -LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n -LamY {x, body, loc} = Lam {body = SY [< x] body, loc} + ||| package a value with a quantity + ||| e.g. a value of [ฯ‰. A], when unpacked, can be used ฯ‰ times, + ||| even if the box itself is linear + BOX : Qty -> Term d n -> Loc -> Term d n + Box : Term d n -> Loc -> Term d n -public export %inline -LamN : (body : Term d n) -> (loc : Loc) -> Term d n -LamN {body, loc} = Lam {body = SN body, loc} + E : Elim d n -> Term d n -||| non dependent function type -public export %inline -Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n -Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc} + ||| term closure/suspended substitution + CloT : WithSubst (Term d) (Elim d) n -> Term d n + ||| dimension closure/suspended substitution + DCloT : WithSubst (\d => Term d n) Dim d -> Term d n -||| more convenient Sig -public export %inline -SigY : (x : BindName) -> (fst : Term d n) -> - (snd : Term d (S n)) -> (loc : Loc) -> Term d n -SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc} +||| first argument `d` is dimension scope size, second `n` is term scope size +public export +data Elim where + ||| free variable, possibly with a displacement (see @crude, or @mugen for a + ||| more abstract and formalised take) + ||| + ||| e.g. if f : โ˜…โ‚€ โ†’ โ˜…โ‚, then fยน : โ˜…โ‚ โ†’ โ˜…โ‚‚ + F : Name -> Universe -> Loc -> Elim 0 0 + ||| bound variable + B : Loc -> Elim 0 1 -||| non dependent pair type -public export %inline -And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n -And {fst, snd, loc} = Sig {fst, snd = SN snd, loc} + ||| term application + App : Subterms [Elim, Term] d n -> Loc -> Elim d n -||| more convenient Eq -public export %inline -EqY : (i : BindName) -> (ty : Term (S d) n) -> - (l, r : Term d n) -> (loc : Loc) -> Term d n -EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc} + ||| pair match + ||| - the subterms are, in order: [head, return type, body] + ||| - the quantity is that of the head, and since pairs only have one + ||| constructor, can be 0 + CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n -> + Loc -> Elim d n -||| more convenient DLam -public export %inline -DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n -DLamY {i, body, loc} = DLam {body = SY [< i] body, loc} + ||| enum match + CaseEnum : Qty -> (arms : List TagVal) -> + Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n -> + Loc -> Elim d n -public export %inline -DLamN : (body : Term d n) -> (loc : Loc) -> Term d n -DLamN {body, loc} = DLam {body = SN body, loc} + ||| nat match + CaseNat : Qty -> Qty -> + Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n -> + Loc -> Elim d n + + ||| box match + CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n + + ||| dim application + DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n + + ||| type-annotated term + Ann : Subterms [Term, Term] d n -> Loc -> Elim d n + + ||| coerce a value along a type equality, or show its coherence + ||| [@xtt; ยง2.1.1] + Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n -> + Loc -> Elim d n + + ||| "generalised composition" [@xtt; ยง2.1.2] + Comp : Subterms [Term, DimArg, DimArg, Term, + DimArg, DScopeTerm, DScopeTerm] d n -> + Loc -> Elim d n + + ||| match on types. needed for b.s. of coercions [@xtt; ยง2.2] + TypeCase : Subterms [Elim, Term, -- head, type + Term, -- โ˜… + ScopeTermN 2, -- pi + ScopeTermN 2, -- sig + Term, -- enum + ScopeTermN 5, -- eq + Term, -- nat + ScopeTerm -- box + ] d n -> Loc -> Elim d n + + ||| term closure/suspended substitution + CloE : WithSubst (Elim d) (Elim d) n -> Elim d n + ||| dimension closure/suspended substitution + DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n + + +-- this kills the idris โ˜น +-- export %hint +-- EqTerm : Eq (Term d n) + +-- export %hint +-- EqElim : Eq (Elim d n) + +-- EqTerm = deriveEq +-- EqElim = deriveEq + + +-- mutual +-- export %hint +-- ShowTerm : Show (Term d n) +-- ShowTerm = assert_total {a = Show (Term d n)} deriveShow + +-- export %hint +-- ShowElim : Show (Elim d n) +-- ShowElim = assert_total {a = Show (Elim d n)} deriveShow + +-- ||| scope which ignores all its binders +-- public export %inline +-- SN : {s : Nat} -> f n -> Scoped s f n +-- SN = S (replicate s $ BN Unused noLoc) . N + +-- ||| scope which uses its binders +-- public export %inline +-- SY : BContext s -> f (s + n) -> Scoped s f n +-- SY ns = S ns . Y + +-- public export %inline +-- name : Scoped 1 f n -> BindName +-- name (S [< x] _) = x + +-- public export %inline +-- (.name) : Scoped 1 f n -> BindName +-- s.name = name s + +-- ||| more convenient Pi +-- public export %inline +-- PiY : (qty : Qty) -> (x : BindName) -> +-- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n +-- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc} + +-- ||| more convenient Lam +-- public export %inline +-- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n +-- LamY {x, body, loc} = Lam {body = SY [< x] body, loc} + +-- public export %inline +-- LamN : (body : Term d n) -> (loc : Loc) -> Term d n +-- LamN {body, loc} = Lam {body = SN body, loc} + +-- ||| non dependent function type +-- public export %inline +-- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n +-- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc} + +-- ||| more convenient Sig +-- public export %inline +-- SigY : (x : BindName) -> (fst : Term d n) -> +-- (snd : Term d (S n)) -> (loc : Loc) -> Term d n +-- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc} + +-- ||| non dependent pair type +-- public export %inline +-- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n +-- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc} + +-- ||| more convenient Eq +-- public export %inline +-- EqY : (i : BindName) -> (ty : Term (S d) n) -> +-- (l, r : Term d n) -> (loc : Loc) -> Term d n +-- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc} + +-- ||| more convenient DLam +-- public export %inline +-- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n +-- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc} + +-- public export %inline +-- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n +-- DLamN {body, loc} = DLam {body = SN body, loc} + +-- ||| non dependent equality type +-- public export %inline +-- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n +-- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc} -||| non dependent equality type -public export %inline -Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n -Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc} ||| same as `F` but as a term public export %inline -FT : Name -> Universe -> Loc -> Term d n +FT : Name -> Universe -> Loc -> Term 0 0 FT x u loc = E $ F x u loc ||| abbreviation for a bound variable like `BV 4` instead of ||| `B (VS (VS (VS (VS VZ))))` public export %inline -BV : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Elim d n -BV i loc = B (V i) loc +BV : (i : Fin n) -> (loc : Loc) -> ElimT d n +BV i loc = Th2 zero (one' i) $ B loc ||| same as `BV` but as a term public export %inline -BVT : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Term d n -BVT i loc = E $ BV i loc +BVT : (i : Fin n) -> (loc : Loc) -> TermT d n +BVT i loc = Th2 zero (one' i) $ E $ B loc public export -makeNat : Nat -> Loc -> Term d n -makeNat 0 loc = Zero loc +makeNat : Nat -> Loc -> Term 0 0 +makeNat 0 loc = Zero loc makeNat (S k) loc = Succ (makeNat k loc) loc -public export %inline -enum : List TagVal -> Loc -> Term d n -enum ts loc = Enum (SortedSet.fromList ts) loc - -public export %inline -typeCase : Elim d n -> Term d n -> - List (TypeCaseArm d n) -> Term d n -> Loc -> Elim d n -typeCase ty ret arms def loc = TypeCase ty ret (fromList arms) def loc - -public export %inline -typeCase1Y : Elim d n -> Term d n -> - (k : TyConKind) -> BContext (arity k) -> Term d (arity k + n) -> - (loc : Loc) -> - {default (Nat loc) def : Term d n} -> - Elim d n -typeCase1Y ty ret k ns body loc = typeCase ty ret [(k ** SY ns body)] def loc - export Located (Elim d n) where - (F _ _ loc).loc = loc - (B _ loc).loc = loc - (App _ _ loc).loc = loc - (CasePair _ _ _ _ loc).loc = loc - (CaseEnum _ _ _ _ loc).loc = loc - (CaseNat _ _ _ _ _ _ loc).loc = loc - (CaseBox _ _ _ _ loc).loc = loc - (DApp _ _ loc).loc = loc - (Ann _ _ loc).loc = loc - (Coe _ _ _ _ loc).loc = loc - (Comp _ _ _ _ _ _ _ loc).loc = loc - (TypeCase _ _ _ _ loc).loc = loc - (CloE (Sub e _)).loc = e.loc - (DCloE (Sub e _)).loc = e.loc + (F _ _ loc).loc = loc + (B loc).loc = loc + (App _ loc).loc = loc + (CasePair _ _ loc).loc = loc + (CaseEnum _ _ _ loc).loc = loc + (CaseNat _ _ _ loc).loc = loc + (CaseBox _ _ loc).loc = loc + (DApp _ loc).loc = loc + (Ann _ loc).loc = loc + (Coe _ loc).loc = loc + (Comp _ loc).loc = loc + (TypeCase _ loc).loc = loc + (CloE (Sub e _)).loc = e.loc + (DCloE (Sub e _)).loc = e.loc export Located (Term d n) where (TYPE _ loc).loc = loc - (Pi _ _ _ loc).loc = loc + (Pi _ _ loc).loc = loc (Lam _ loc).loc = loc - (Sig _ _ loc).loc = loc - (Pair _ _ loc).loc = loc + (Sig _ loc).loc = loc + (Pair _ loc).loc = loc (Enum _ loc).loc = loc (Tag _ loc).loc = loc - (Eq _ _ _ loc).loc = loc + (Eq _ loc).loc = loc (DLam _ loc).loc = loc (Nat loc).loc = loc (Zero loc).loc = loc @@ -395,69 +349,40 @@ Located (Term d n) where (CloT (Sub t _)).loc = t.loc (DCloT (Sub t _)).loc = t.loc -export -Located1 f => Located (ScopedBody s f n) where - (Y t).loc = t.loc - (N t).loc = t.loc - -export -Located1 f => Located (Scoped s f n) where - t.loc = t.body.loc - export Relocatable (Elim d n) where - setLoc loc (F x u _) = F x u loc - setLoc loc (B i _) = B i loc - setLoc loc (App fun arg _) = App fun arg loc - setLoc loc (CasePair qty pair ret body _) = - CasePair qty pair ret body loc - setLoc loc (CaseEnum qty tag ret arms _) = - CaseEnum qty tag ret arms loc - setLoc loc (CaseNat qty qtyIH nat ret zero succ _) = - CaseNat qty qtyIH nat ret zero succ loc - setLoc loc (CaseBox qty box ret body _) = - CaseBox qty box ret body loc - setLoc loc (DApp fun arg _) = - DApp fun arg loc - setLoc loc (Ann tm ty _) = - Ann tm ty loc - setLoc loc (Coe ty p q val _) = - Coe ty p q val loc - setLoc loc (Comp ty p q val r zero one _) = - Comp ty p q val r zero one loc - setLoc loc (TypeCase ty ret arms def _) = - TypeCase ty ret arms def loc - setLoc loc (CloE (Sub term subst)) = - CloE $ Sub (setLoc loc term) subst - setLoc loc (DCloE (Sub term subst)) = - DCloE $ Sub (setLoc loc term) subst + setLoc loc (F x u _) = F x u loc + setLoc loc (B _) = B loc + setLoc loc (App ts _) = App ts loc + setLoc loc (CasePair qty ts _) = CasePair qty ts loc + setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc + setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc + setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc + setLoc loc (DApp ts _) = DApp ts loc + setLoc loc (Ann ts _) = Ann ts loc + setLoc loc (Coe ts _) = Coe ts loc + setLoc loc (Comp ts _) = Comp ts loc + setLoc loc (TypeCase ts _) = TypeCase ts loc + setLoc loc (CloE (Sub term subst)) = CloE $ Sub (setLoc loc term) subst + setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst export Relocatable (Term d n) where - setLoc loc (TYPE l _) = TYPE l loc - setLoc loc (Pi qty arg res _) = Pi qty arg res loc - setLoc loc (Lam body _) = Lam body loc - setLoc loc (Sig fst snd _) = Sig fst snd loc - setLoc loc (Pair fst snd _) = Pair fst snd loc - setLoc loc (Enum cases _) = Enum cases loc - setLoc loc (Tag tag _) = Tag tag loc - setLoc loc (Eq ty l r _) = Eq ty l r loc - setLoc loc (DLam body _) = DLam body loc - setLoc loc (Nat _) = Nat loc - setLoc loc (Zero _) = Zero loc - setLoc loc (Succ p _) = Succ p loc - setLoc loc (BOX qty ty _) = BOX qty ty loc - setLoc loc (Box val _) = Box val loc - setLoc loc (E e) = E $ setLoc loc e - setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst + setLoc loc (TYPE l _) = TYPE l loc + setLoc loc (Pi qty ts _) = Pi qty ts loc + setLoc loc (Lam body _) = Lam body loc + setLoc loc (Sig ts _) = Sig ts loc + setLoc loc (Pair ts _) = Pair ts loc + setLoc loc (Enum cases _) = Enum cases loc + setLoc loc (Tag tag _) = Tag tag loc + setLoc loc (Eq ts _) = Eq ts loc + setLoc loc (DLam body _) = DLam body loc + setLoc loc (Nat _) = Nat loc + setLoc loc (Zero _) = Zero loc + setLoc loc (Succ p _) = Succ p loc + setLoc loc (BOX qty ty _) = BOX qty ty loc + setLoc loc (Box val _) = Box val loc + setLoc loc (E e) = E $ setLoc loc e + setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst - -export -Relocatable1 f => Relocatable (ScopedBody s f n) where - setLoc loc (Y body) = Y $ setLoc loc body - setLoc loc (N body) = N $ setLoc loc body - -export -Relocatable1 f => Relocatable (Scoped s f n) where - setLoc loc (S names body) = S (setLoc loc <$> names) (setLoc loc body)