switch syntax to codb

This commit is contained in:
rhiannon morris 2023-06-05 16:40:55 +02:00
parent 92870fe716
commit 9e702dd03d

View file

@ -1,5 +1,6 @@
module Quox.Syntax.Term.Base module Quox.Syntax.Term.Base
import public Quox.Thin
import public Quox.Syntax.Var import public Quox.Syntax.Var
import public Quox.Syntax.Shift import public Quox.Syntax.Shift
import public Quox.Syntax.Subst import public Quox.Syntax.Subst
@ -18,9 +19,6 @@ import Data.Maybe
import Data.Nat import Data.Nat
import public Data.So import public Data.So
import Data.String import Data.String
import public Data.SortedMap
import public Data.SortedMap.Dependent
import public Data.SortedSet
import Derive.Prelude import Derive.Prelude
%default total %default total
@ -46,345 +44,301 @@ TagVal : Type
TagVal = String TagVal = String
||| type-checkable terms, which consists of types and constructor forms.
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export public export
data ScopedBody : Nat -> (Nat -> Type) -> Nat -> Type where data Term : (d, n : Nat) -> Type
Y : (body : f (s + n)) -> ScopedBody s f n %name Term s, t, r
N : (body : f n) -> ScopedBody s f n
%name ScopedBody body
export %inline %hint ||| inferrable terms, which consists of elimination forms like application and
EqScopedBody : (forall n. Eq (f n)) => Eq (ScopedBody s f n) ||| `case` (as well as other terms with an annotation)
EqScopedBody = deriveEq |||
||| first argument `d` is dimension scope size; second `n` is term scope size
export %inline %hint
ShowScopedBody : (forall n. Show (f n)) => Show (ScopedBody s f n)
ShowScopedBody = deriveShow
||| a scoped term with names
public export public export
record Scoped (s : Nat) (f : Nat -> Type) (n : Nat) where data Elim : (d, n : Nat) -> Type
constructor S %name Elim e, f
names : BContext s
body : ScopedBody s f n
%name Scoped body
export %inline
(forall n. Eq (f n)) => Eq (Scoped s f n) where
s == t = s.body == t.body
export %inline %hint
ShowScoped : (forall n. Show (f n)) => Show (Scoped s f n)
ShowScoped = deriveShow
infixl 8 :# public export
infixl 9 :@, :% ScopeTermN : Nat -> TermLike
mutual ScopeTermN s d n = ScopedN s (\n => Term d n) n
public export
TSubst : TSubstLike
TSubst d = Subst $ \n => Elim d n
||| first argument `d` is dimension scope size; public export
||| second `n` is term scope size DScopeTermN : Nat -> TermLike
public export DScopeTermN s d n = ScopedN s (\d => Term d n) d
data Term : (d, n : Nat) -> Type where
||| type of types
TYPE : (l : Universe) -> (loc : Loc) -> Term d n
||| function type public export
Pi : (qty : Qty) -> (arg : Term d n) -> ScopeTerm : TermLike
(res : ScopeTerm d n) -> (loc : Loc) -> Term d n ScopeTerm = ScopeTermN 1
||| function term
Lam : (body : ScopeTerm d n) -> (loc : Loc) -> Term d n
||| pair type public export
Sig : (fst : Term d n) -> (snd : ScopeTerm d n) -> (loc : Loc) -> Term d n DScopeTerm : TermLike
||| pair value DScopeTerm = DScopeTermN 1
Pair : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
||| enumeration type
Enum : (cases : SortedSet TagVal) -> (loc : Loc) -> Term d n
||| enumeration value
Tag : (tag : TagVal) -> (loc : Loc) -> Term d n
||| equality type
Eq : (ty : DScopeTerm d n) -> (l, r : Term d n) -> (loc : Loc) -> Term d n
||| equality term
DLam : (body : DScopeTerm d n) -> (loc : Loc) -> Term d n
||| natural numbers (temporary until 𝐖 gets added)
Nat : (loc : Loc) -> Term d n
-- [todo] can these be elims?
Zero : (loc : Loc) -> Term d n
Succ : (p : Term d n) -> (loc : Loc) -> Term d n
||| "box" (package a value up with a certain quantity)
BOX : (qty : Qty) -> (ty : Term d n) -> (loc : Loc) -> Term d n
Box : (val : Term d n) -> (loc : Loc) -> Term d n
||| elimination
E : (e : Elim d n) -> Term d n
||| term closure/suspended substitution
CloT : WithSubst (Term d) (Elim d) n -> Term d n
||| dimension closure/suspended substitution
DCloT : WithSubst (\d => Term d n) Dim d -> Term d n
%name Term s, t, r
||| first argument `d` is dimension scope size, second `n` is term scope size
public export
data Elim : (d, n : Nat) -> Type where
||| free variable, possibly with a displacement (see @crude, or @mugen for a
||| more abstract and formalised take)
|||
||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂
F : (x : Name) -> (u : Universe) -> (loc : Loc) -> Elim d n
||| bound variable
B : (i : Var n) -> (loc : Loc) -> Elim d n
||| term application
App : (fun : Elim d n) -> (arg : Term d n) -> (loc : Loc) -> Elim d n
||| pair destruction
|||
||| `CasePair 𝜋 𝑒 ([𝑟], 𝐴) ([𝑥, 𝑦], 𝑡)` is
||| `𝐜𝐚𝐬𝐞 𝜋 · 𝑒 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟𝐴 𝐨𝐟 { (𝑥, 𝑦) ⇒ 𝑡 }`
CasePair : (qty : Qty) -> (pair : Elim d n) ->
(ret : ScopeTerm d n) ->
(body : ScopeTermN 2 d n) ->
(loc : Loc) ->
Elim d n
||| enum matching
CaseEnum : (qty : Qty) -> (tag : Elim d n) ->
(ret : ScopeTerm d n) ->
(arms : CaseEnumArms d n) ->
(loc : Loc) ->
Elim d n
||| nat matching
CaseNat : (qty, qtyIH : Qty) -> (nat : Elim d n) ->
(ret : ScopeTerm d n) ->
(zero : Term d n) ->
(succ : ScopeTermN 2 d n) ->
(loc : Loc) ->
Elim d n
||| unboxing
CaseBox : (qty : Qty) -> (box : Elim d n) ->
(ret : ScopeTerm d n) ->
(body : ScopeTerm d n) ->
(loc : Loc) ->
Elim d n
||| dim application
DApp : (fun : Elim d n) -> (arg : Dim d) -> (loc : Loc) -> Elim d n
||| type-annotated term
Ann : (tm, ty : Term d n) -> (loc : Loc) -> Elim d n
||| coerce a value along a type equality, or show its coherence
||| [@xtt; §2.1.1]
Coe : (ty : DScopeTerm d n) -> (p, q : Dim d) ->
(val : Term d n) -> (loc : Loc) -> Elim d n
||| "generalised composition" [@xtt; §2.1.2]
Comp : (ty : Term d n) -> (p, q : Dim d) ->
(val : Term d n) -> (r : Dim d) ->
(zero, one : DScopeTerm d n) -> (loc : Loc) -> Elim d n
||| match on types. needed for b.s. of coercions [@xtt; §2.2]
TypeCase : (ty : Elim d n) -> (ret : Term d n) ->
(arms : TypeCaseArms d n) -> (def : Term d n) ->
(loc : Loc) ->
Elim d n
||| term closure/suspended substitution
CloE : WithSubst (Elim d) (Elim d) n -> Elim d n
||| dimension closure/suspended substitution
DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n
%name Elim e, f
public export
CaseEnumArms : TermLike
CaseEnumArms d n = SortedMap TagVal (Term d n)
public export
TypeCaseArms : TermLike
TypeCaseArms d n = SortedDMap TyConKind (\k => TypeCaseArmBody k d n)
public export
TypeCaseArm : TermLike
TypeCaseArm d n = (k ** TypeCaseArmBody k d n)
public export
TypeCaseArmBody : TyConKind -> TermLike
TypeCaseArmBody k = ScopeTermN (arity k)
public export public export
ScopeTermN, DScopeTermN : Nat -> TermLike TermT : TermLike
ScopeTermN s d n = Scoped s (Term d) n TermT = Thinned2 (\d, n => Term d n)
DScopeTermN s d n = Scoped s (\d => Term d n) d
public export public export
ScopeTerm, DScopeTerm : TermLike ElimT : TermLike
ScopeTerm = ScopeTermN 1 ElimT = Thinned2 (\d, n => Elim d n)
DScopeTerm = DScopeTermN 1
mutual
export %hint
EqTerm : Eq (Term d n)
EqTerm = assert_total {a = Eq (Term d n)} deriveEq
export %hint public export
EqElim : Eq (Elim d n) DimArg : TermLike
EqElim = assert_total {a = Eq (Elim d n)} deriveEq DimArg d n = Dim d
mutual
export %hint
ShowTerm : Show (Term d n)
ShowTerm = assert_total {a = Show (Term d n)} deriveShow
export %hint data Term where
ShowElim : Show (Elim d n) ||| type of types
ShowElim = assert_total {a = Show (Elim d n)} deriveShow TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0
||| scope which ignores all its binders ||| function type
public export %inline Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
SN : {s : Nat} -> f n -> Scoped s f n ||| function value
SN = S (replicate s $ BN Unused noLoc) . N Lam : ScopeTerm d n -> Loc -> Term d n
||| scope which uses its binders ||| pair type
public export %inline Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
SY : BContext s -> f (s + n) -> Scoped s f n ||| pair value
SY ns = S ns . Y Pair : Subterms [Term, Term] d n -> Loc -> Term d n
public export %inline ||| enum type
name : Scoped 1 f n -> BindName Enum : List TagVal -> Loc -> Term 0 0
name (S [< x] _) = x ||| enum value
Tag : TagVal -> Loc -> Term 0 0
public export %inline ||| equality type
(.name) : Scoped 1 f n -> BindName Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n
s.name = name s ||| equality value
DLam : DScopeTerm d n -> Loc -> Term d n
||| more convenient Pi ||| natural numbers (temporary until 𝐖 gets added)
public export %inline Nat : Loc -> Term 0 0
PiY : (qty : Qty) -> (x : BindName) -> Zero : Loc -> Term 0 0
(arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n Succ : Term d n -> Loc -> Term 0 0
PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
||| more convenient Lam ||| package a value with a quantity
public export %inline ||| e.g. a value of [ω. A], when unpacked, can be used ω times,
LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n ||| even if the box itself is linear
LamY {x, body, loc} = Lam {body = SY [< x] body, loc} BOX : Qty -> Term d n -> Loc -> Term d n
Box : Term d n -> Loc -> Term d n
public export %inline E : Elim d n -> Term d n
LamN : (body : Term d n) -> (loc : Loc) -> Term d n
LamN {body, loc} = Lam {body = SN body, loc}
||| non dependent function type ||| term closure/suspended substitution
public export %inline CloT : WithSubst (Term d) (Elim d) n -> Term d n
Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n ||| dimension closure/suspended substitution
Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc} DCloT : WithSubst (\d => Term d n) Dim d -> Term d n
||| more convenient Sig ||| first argument `d` is dimension scope size, second `n` is term scope size
public export %inline public export
SigY : (x : BindName) -> (fst : Term d n) -> data Elim where
(snd : Term d (S n)) -> (loc : Loc) -> Term d n ||| free variable, possibly with a displacement (see @crude, or @mugen for a
SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc} ||| more abstract and formalised take)
|||
||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂
F : Name -> Universe -> Loc -> Elim 0 0
||| bound variable
B : Loc -> Elim 0 1
||| non dependent pair type ||| term application
public export %inline App : Subterms [Elim, Term] d n -> Loc -> Elim d n
And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
||| more convenient Eq ||| pair match
public export %inline ||| - the subterms are, in order: [head, return type, body]
EqY : (i : BindName) -> (ty : Term (S d) n) -> ||| - the quantity is that of the head, and since pairs only have one
(l, r : Term d n) -> (loc : Loc) -> Term d n ||| constructor, can be 0
EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc} CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n ->
Loc -> Elim d n
||| more convenient DLam ||| enum match
public export %inline CaseEnum : Qty -> (arms : List TagVal) ->
DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n ->
DLamY {i, body, loc} = DLam {body = SY [< i] body, loc} Loc -> Elim d n
public export %inline ||| nat match
DLamN : (body : Term d n) -> (loc : Loc) -> Term d n CaseNat : Qty -> Qty ->
DLamN {body, loc} = DLam {body = SN body, loc} Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n ->
Loc -> Elim d n
||| box match
CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n
||| dim application
DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n
||| type-annotated term
Ann : Subterms [Term, Term] d n -> Loc -> Elim d n
||| coerce a value along a type equality, or show its coherence
||| [@xtt; §2.1.1]
Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n ->
Loc -> Elim d n
||| "generalised composition" [@xtt; §2.1.2]
Comp : Subterms [Term, DimArg, DimArg, Term,
DimArg, DScopeTerm, DScopeTerm] d n ->
Loc -> Elim d n
||| match on types. needed for b.s. of coercions [@xtt; §2.2]
TypeCase : Subterms [Elim, Term, -- head, type
Term, -- ★
ScopeTermN 2, -- pi
ScopeTermN 2, -- sig
Term, -- enum
ScopeTermN 5, -- eq
Term, -- nat
ScopeTerm -- box
] d n -> Loc -> Elim d n
||| term closure/suspended substitution
CloE : WithSubst (Elim d) (Elim d) n -> Elim d n
||| dimension closure/suspended substitution
DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n
-- this kills the idris ☹
-- export %hint
-- EqTerm : Eq (Term d n)
-- export %hint
-- EqElim : Eq (Elim d n)
-- EqTerm = deriveEq
-- EqElim = deriveEq
-- mutual
-- export %hint
-- ShowTerm : Show (Term d n)
-- ShowTerm = assert_total {a = Show (Term d n)} deriveShow
-- export %hint
-- ShowElim : Show (Elim d n)
-- ShowElim = assert_total {a = Show (Elim d n)} deriveShow
-- ||| scope which ignores all its binders
-- public export %inline
-- SN : {s : Nat} -> f n -> Scoped s f n
-- SN = S (replicate s $ BN Unused noLoc) . N
-- ||| scope which uses its binders
-- public export %inline
-- SY : BContext s -> f (s + n) -> Scoped s f n
-- SY ns = S ns . Y
-- public export %inline
-- name : Scoped 1 f n -> BindName
-- name (S [< x] _) = x
-- public export %inline
-- (.name) : Scoped 1 f n -> BindName
-- s.name = name s
-- ||| more convenient Pi
-- public export %inline
-- PiY : (qty : Qty) -> (x : BindName) ->
-- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n
-- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
-- ||| more convenient Lam
-- public export %inline
-- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n
-- LamY {x, body, loc} = Lam {body = SY [< x] body, loc}
-- public export %inline
-- LamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- LamN {body, loc} = Lam {body = SN body, loc}
-- ||| non dependent function type
-- public export %inline
-- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n
-- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc}
-- ||| more convenient Sig
-- public export %inline
-- SigY : (x : BindName) -> (fst : Term d n) ->
-- (snd : Term d (S n)) -> (loc : Loc) -> Term d n
-- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc}
-- ||| non dependent pair type
-- public export %inline
-- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
-- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
-- ||| more convenient Eq
-- public export %inline
-- EqY : (i : BindName) -> (ty : Term (S d) n) ->
-- (l, r : Term d n) -> (loc : Loc) -> Term d n
-- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc}
-- ||| more convenient DLam
-- public export %inline
-- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n
-- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc}
-- public export %inline
-- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- DLamN {body, loc} = DLam {body = SN body, loc}
-- ||| non dependent equality type
-- public export %inline
-- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
-- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
||| non dependent equality type
public export %inline
Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
||| same as `F` but as a term ||| same as `F` but as a term
public export %inline public export %inline
FT : Name -> Universe -> Loc -> Term d n FT : Name -> Universe -> Loc -> Term 0 0
FT x u loc = E $ F x u loc FT x u loc = E $ F x u loc
||| abbreviation for a bound variable like `BV 4` instead of ||| abbreviation for a bound variable like `BV 4` instead of
||| `B (VS (VS (VS (VS VZ))))` ||| `B (VS (VS (VS (VS VZ))))`
public export %inline public export %inline
BV : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Elim d n BV : (i : Fin n) -> (loc : Loc) -> ElimT d n
BV i loc = B (V i) loc BV i loc = Th2 zero (one' i) $ B loc
||| same as `BV` but as a term ||| same as `BV` but as a term
public export %inline public export %inline
BVT : (i : Nat) -> (0 _ : LT i n) => (loc : Loc) -> Term d n BVT : (i : Fin n) -> (loc : Loc) -> TermT d n
BVT i loc = E $ BV i loc BVT i loc = Th2 zero (one' i) $ E $ B loc
public export public export
makeNat : Nat -> Loc -> Term d n makeNat : Nat -> Loc -> Term 0 0
makeNat 0 loc = Zero loc makeNat 0 loc = Zero loc
makeNat (S k) loc = Succ (makeNat k loc) loc makeNat (S k) loc = Succ (makeNat k loc) loc
public export %inline
enum : List TagVal -> Loc -> Term d n
enum ts loc = Enum (SortedSet.fromList ts) loc
public export %inline
typeCase : Elim d n -> Term d n ->
List (TypeCaseArm d n) -> Term d n -> Loc -> Elim d n
typeCase ty ret arms def loc = TypeCase ty ret (fromList arms) def loc
public export %inline
typeCase1Y : Elim d n -> Term d n ->
(k : TyConKind) -> BContext (arity k) -> Term d (arity k + n) ->
(loc : Loc) ->
{default (Nat loc) def : Term d n} ->
Elim d n
typeCase1Y ty ret k ns body loc = typeCase ty ret [(k ** SY ns body)] def loc
export export
Located (Elim d n) where Located (Elim d n) where
(F _ _ loc).loc = loc (F _ _ loc).loc = loc
(B _ loc).loc = loc (B loc).loc = loc
(App _ _ loc).loc = loc (App _ loc).loc = loc
(CasePair _ _ _ _ loc).loc = loc (CasePair _ _ loc).loc = loc
(CaseEnum _ _ _ _ loc).loc = loc (CaseEnum _ _ _ loc).loc = loc
(CaseNat _ _ _ _ _ _ loc).loc = loc (CaseNat _ _ _ loc).loc = loc
(CaseBox _ _ _ _ loc).loc = loc (CaseBox _ _ loc).loc = loc
(DApp _ _ loc).loc = loc (DApp _ loc).loc = loc
(Ann _ _ loc).loc = loc (Ann _ loc).loc = loc
(Coe _ _ _ _ loc).loc = loc (Coe _ loc).loc = loc
(Comp _ _ _ _ _ _ _ loc).loc = loc (Comp _ loc).loc = loc
(TypeCase _ _ _ _ loc).loc = loc (TypeCase _ loc).loc = loc
(CloE (Sub e _)).loc = e.loc (CloE (Sub e _)).loc = e.loc
(DCloE (Sub e _)).loc = e.loc (DCloE (Sub e _)).loc = e.loc
export export
Located (Term d n) where Located (Term d n) where
(TYPE _ loc).loc = loc (TYPE _ loc).loc = loc
(Pi _ _ _ loc).loc = loc (Pi _ _ loc).loc = loc
(Lam _ loc).loc = loc (Lam _ loc).loc = loc
(Sig _ _ loc).loc = loc (Sig _ loc).loc = loc
(Pair _ _ loc).loc = loc (Pair _ loc).loc = loc
(Enum _ loc).loc = loc (Enum _ loc).loc = loc
(Tag _ loc).loc = loc (Tag _ loc).loc = loc
(Eq _ _ _ loc).loc = loc (Eq _ loc).loc = loc
(DLam _ loc).loc = loc (DLam _ loc).loc = loc
(Nat loc).loc = loc (Nat loc).loc = loc
(Zero loc).loc = loc (Zero loc).loc = loc
@ -395,69 +349,40 @@ Located (Term d n) where
(CloT (Sub t _)).loc = t.loc (CloT (Sub t _)).loc = t.loc
(DCloT (Sub t _)).loc = t.loc (DCloT (Sub t _)).loc = t.loc
export
Located1 f => Located (ScopedBody s f n) where
(Y t).loc = t.loc
(N t).loc = t.loc
export
Located1 f => Located (Scoped s f n) where
t.loc = t.body.loc
export export
Relocatable (Elim d n) where Relocatable (Elim d n) where
setLoc loc (F x u _) = F x u loc setLoc loc (F x u _) = F x u loc
setLoc loc (B i _) = B i loc setLoc loc (B _) = B loc
setLoc loc (App fun arg _) = App fun arg loc setLoc loc (App ts _) = App ts loc
setLoc loc (CasePair qty pair ret body _) = setLoc loc (CasePair qty ts _) = CasePair qty ts loc
CasePair qty pair ret body loc setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc
setLoc loc (CaseEnum qty tag ret arms _) = setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc
CaseEnum qty tag ret arms loc setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc
setLoc loc (CaseNat qty qtyIH nat ret zero succ _) = setLoc loc (DApp ts _) = DApp ts loc
CaseNat qty qtyIH nat ret zero succ loc setLoc loc (Ann ts _) = Ann ts loc
setLoc loc (CaseBox qty box ret body _) = setLoc loc (Coe ts _) = Coe ts loc
CaseBox qty box ret body loc setLoc loc (Comp ts _) = Comp ts loc
setLoc loc (DApp fun arg _) = setLoc loc (TypeCase ts _) = TypeCase ts loc
DApp fun arg loc setLoc loc (CloE (Sub term subst)) = CloE $ Sub (setLoc loc term) subst
setLoc loc (Ann tm ty _) = setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst
Ann tm ty loc
setLoc loc (Coe ty p q val _) =
Coe ty p q val loc
setLoc loc (Comp ty p q val r zero one _) =
Comp ty p q val r zero one loc
setLoc loc (TypeCase ty ret arms def _) =
TypeCase ty ret arms def loc
setLoc loc (CloE (Sub term subst)) =
CloE $ Sub (setLoc loc term) subst
setLoc loc (DCloE (Sub term subst)) =
DCloE $ Sub (setLoc loc term) subst
export export
Relocatable (Term d n) where Relocatable (Term d n) where
setLoc loc (TYPE l _) = TYPE l loc setLoc loc (TYPE l _) = TYPE l loc
setLoc loc (Pi qty arg res _) = Pi qty arg res loc setLoc loc (Pi qty ts _) = Pi qty ts loc
setLoc loc (Lam body _) = Lam body loc setLoc loc (Lam body _) = Lam body loc
setLoc loc (Sig fst snd _) = Sig fst snd loc setLoc loc (Sig ts _) = Sig ts loc
setLoc loc (Pair fst snd _) = Pair fst snd loc setLoc loc (Pair ts _) = Pair ts loc
setLoc loc (Enum cases _) = Enum cases loc setLoc loc (Enum cases _) = Enum cases loc
setLoc loc (Tag tag _) = Tag tag loc setLoc loc (Tag tag _) = Tag tag loc
setLoc loc (Eq ty l r _) = Eq ty l r loc setLoc loc (Eq ts _) = Eq ts loc
setLoc loc (DLam body _) = DLam body loc setLoc loc (DLam body _) = DLam body loc
setLoc loc (Nat _) = Nat loc setLoc loc (Nat _) = Nat loc
setLoc loc (Zero _) = Zero loc setLoc loc (Zero _) = Zero loc
setLoc loc (Succ p _) = Succ p loc setLoc loc (Succ p _) = Succ p loc
setLoc loc (BOX qty ty _) = BOX qty ty loc setLoc loc (BOX qty ty _) = BOX qty ty loc
setLoc loc (Box val _) = Box val loc setLoc loc (Box val _) = Box val loc
setLoc loc (E e) = E $ setLoc loc e setLoc loc (E e) = E $ setLoc loc e
setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst
setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst
export
Relocatable1 f => Relocatable (ScopedBody s f n) where
setLoc loc (Y body) = Y $ setLoc loc body
setLoc loc (N body) = N $ setLoc loc body
export
Relocatable1 f => Relocatable (Scoped s f n) where
setLoc loc (S names body) = S (setLoc loc <$> names) (setLoc loc body)