make function types with an empty domain subsingletons
this is useful for the base cases of W types when i try those again closes #23
This commit is contained in:
parent
244b33d786
commit
3fe9b96f05
2 changed files with 54 additions and 6 deletions
|
@ -1,3 +1,5 @@
|
|||
load "misc.quox"
|
||||
|
||||
namespace eta {
|
||||
|
||||
def0 Π : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) → B x
|
||||
|
@ -10,4 +12,9 @@ def0 box : (A : ★) → (P : [ω.A] → ★) → (e : [ω.A]) →
|
|||
P [case1 e return A of {[x] ⇒ x}] → P e =
|
||||
λ A P e p ⇒ p
|
||||
|
||||
-- not exactly η, but kinda related
|
||||
def0 from-false : (A : ★) → (P : (False → A) → ★) → (f : False → A) →
|
||||
P (λ x ⇒ void A x) → P f =
|
||||
λ A P f p ⇒ p
|
||||
|
||||
}
|
||||
|
|
|
@ -63,11 +63,44 @@ sameTyCon (E {}) (E {}) = True
|
|||
sameTyCon (E {}) _ = False
|
||||
|
||||
|
||||
||| true if a type is known to be empty.
|
||||
|||
|
||||
||| * a pair is empty if either element is.
|
||||
||| * `{}` is empty.
|
||||
||| * `[π.A]` is empty if `A` is.
|
||||
||| * that's it.
|
||||
public export covering
|
||||
isEmpty : {n : Nat} -> Definitions -> EqContext n -> Term 0 n ->
|
||||
Eff EqualInner Bool
|
||||
isEmpty defs ctx ty0 = do
|
||||
Element ty0 nc <- whnf defs ctx ty0.loc ty0
|
||||
case ty0 of
|
||||
TYPE {} => pure False
|
||||
Pi {arg, res, _} => pure False
|
||||
Sig {fst, snd, _} =>
|
||||
isEmpty defs ctx fst `orM`
|
||||
isEmpty defs (extendTy0 snd.name fst ctx) snd.term
|
||||
Enum {cases, _} =>
|
||||
pure $ null cases
|
||||
Eq {} => pure False
|
||||
Nat {} => pure False
|
||||
BOX {ty, _} => isEmpty defs ctx ty
|
||||
E (Ann {tm, _}) => isEmpty defs ctx tm
|
||||
E _ => pure False
|
||||
Lam {} => pure False
|
||||
Pair {} => pure False
|
||||
Tag {} => pure False
|
||||
DLam {} => pure False
|
||||
Zero {} => pure False
|
||||
Succ {} => pure False
|
||||
Box {} => pure False
|
||||
|
||||
||| true if a type is known to be a subsingleton purely by its form.
|
||||
||| a subsingleton is a type with only zero or one possible values.
|
||||
||| equality/subtyping accepts immediately on values of subsingleton types.
|
||||
|||
|
||||
||| * a function type is a subsingleton if its codomain is.
|
||||
||| * a function type is a subsingleton if its codomain is,
|
||||
||| or if its domain is empty.
|
||||
||| * a pair type is a subsingleton if both its elements are.
|
||||
||| * equality types are subsingletons because of uip.
|
||||
||| * an enum type is a subsingleton if it has zero or one tags.
|
||||
|
@ -80,6 +113,7 @@ isSubSing defs ctx ty0 = do
|
|||
case ty0 of
|
||||
TYPE {} => pure False
|
||||
Pi {arg, res, _} =>
|
||||
isEmpty defs ctx arg `orM`
|
||||
isSubSing defs (extendTy0 res.name arg ctx) res.term
|
||||
Sig {fst, snd, _} =>
|
||||
isSubSing defs ctx fst `andM`
|
||||
|
@ -149,7 +183,11 @@ namespace Term
|
|||
Eff EqualInner ()
|
||||
compare0' defs ctx (TYPE {}) s t = compareType defs ctx s t
|
||||
|
||||
compare0' defs ctx ty@(Pi {qty, arg, res, _}) s t {n} = local_ Equal $
|
||||
compare0' defs ctx ty@(Pi {qty, arg, res, _}) s t = local_ Equal $
|
||||
-- Γ ⊢ A empty
|
||||
-- -------------------------------------------
|
||||
-- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) : (π·x : A) → B
|
||||
if !(isEmpty' arg) then pure () else
|
||||
case (s, t) of
|
||||
-- Γ, x : A ⊢ s = t : B
|
||||
-- -------------------------------------------
|
||||
|
@ -169,6 +207,9 @@ namespace Term
|
|||
(E _, t) => wrongType t.loc ctx ty t
|
||||
(s, _) => wrongType s.loc ctx ty s
|
||||
where
|
||||
isEmpty' : Term 0 n -> Eff EqualInner Bool
|
||||
isEmpty' t = let Val n = ctx.termLen in isEmpty defs ctx arg
|
||||
|
||||
ctx' : EqContext (S n)
|
||||
ctx' = extendTy qty res.name arg ctx
|
||||
|
||||
|
|
Loading…
Reference in a new issue