re-add tightening and use it when messing with scopes

e.g. "coe [_ ⇒ A] @p @q s" should immediately reduce to "s",
but if the "_ ⇒ A" happened to use an SY it didn't.

this will still happen if a wrong SY sneaks in but the alternative is
re-traversing the term over and over every time whnf runs
This commit is contained in:
rhiannon morris 2023-04-17 20:56:31 +02:00
parent a5ccf0215a
commit 3fb8580f85
16 changed files with 534 additions and 304 deletions

76
lib/Quox/OPE.idr Normal file
View file

@ -0,0 +1,76 @@
||| "order preserving embeddings", for recording a correspondence between
||| a smaller scope and part of a larger one.
module Quox.OPE
import Quox.NatExtra
import Data.Nat
%default total
public export
data OPE : Nat -> Nat -> Type where
Id : OPE n n
Drop : OPE m n -> OPE m (S n)
Keep : OPE m n -> OPE (S m) (S n)
%name OPE p, q
public export %inline Injective Drop where injective Refl = Refl
public export %inline Injective Keep where injective Refl = Refl
public export
opeZero : {n : Nat} -> OPE 0 n
opeZero {n = 0} = Id
opeZero {n = S n} = Drop opeZero
public export
(.) : OPE m n -> OPE n p -> OPE m p
p . Id = p
Id . q = q
p . Drop q = Drop $ p . q
Drop p . Keep q = Drop $ p . q
Keep p . Keep q = Keep $ p . q
public export
toLTE : {m : Nat} -> OPE m n -> m `LTE` n
toLTE Id = reflexive
toLTE (Drop p) = lteSuccRight $ toLTE p
toLTE (Keep p) = LTESucc $ toLTE p
public export
keepN : (n : Nat) -> OPE a b -> OPE (n + a) (n + b)
keepN 0 p = p
keepN (S n) p = Keep $ keepN n p
public export
dropInner' : LTE' m n -> OPE m n
dropInner' LTERefl = Id
dropInner' (LTESuccR p) = Drop $ dropInner' $ force p
public export
dropInner : {n : Nat} -> LTE m n -> OPE m n
dropInner = dropInner' . fromLte
public export
dropInnerN : (m : Nat) -> OPE n (m + n)
dropInnerN 0 = Id
dropInnerN (S m) = Drop $ dropInnerN m
public export
interface Tighten t where
tighten : OPE m n -> t n -> Maybe (t m)
parameters {auto _ : Tighten t}
export %inline
tightenInner : {n : Nat} -> m `LTE` n -> t n -> Maybe (t m)
tightenInner = tighten . dropInner
export %inline
tightenN : (m : Nat) -> t (m + n) -> Maybe (t n)
tightenN m = tighten $ dropInnerN m
export %inline
tighten1 : t (S n) -> Maybe (t n)
tighten1 = tightenN 1

View file

@ -164,9 +164,8 @@ mutual
<*> fromPDimWith ds q
<*> fromPTermWith ds ns val
-- [todo] direct translation for homo comp?
Comp (i, ty) p q val r (j0, val0) (j1, val1) =>
map E $ CompH
map E $ CompH'
<$> fromPTermDScope ds ns [< i] ty
<*> fromPDimWith ds p
<*> fromPDimWith ds q
@ -201,7 +200,7 @@ mutual
if all isNothing xs then
SN <$> fromPTermWith ds ns t
else
SY (fromSnocVect $ map (maybe Unused UN) xs)
ST (fromSnocVect $ map (maybe Unused UN) xs)
<$> fromPTermWith ds (ns ++ xs) t
private
@ -213,7 +212,7 @@ mutual
if all isNothing xs then
SN <$> fromPTermWith ds ns t
else
SY (fromSnocVect $ map (maybe Unused UN) xs)
DST (fromSnocVect $ map (maybe Unused UN) xs)
<$> fromPTermWith (ds ++ xs) ns t

View file

@ -251,8 +251,8 @@ mutual
tycasePi (Pi {arg, res, _}) = pure (arg, res)
tycasePi (E e) {tnf} = do
ty <- computeElimType defs ctx e @{noOr2 tnf}
let arg = E $ typeCase1 e ty KPi [< "Arg", "Ret"] (BVT 1)
res' = typeCase1 e (Arr Zero arg ty) KPi [< "Arg", "Ret"] (BVT 0)
let arg = E $ typeCase1Y e ty KPi [< "Arg", "Ret"] (BVT 1)
res' = typeCase1Y e (Arr Zero arg ty) KPi [< "Arg", "Ret"] (BVT 0)
res = SY [< "Arg"] $ E $ weakE 1 res' :@ BVT 0
pure (arg, res)
tycasePi t = Left $ ExpectedPi ctx.names t
@ -266,8 +266,8 @@ mutual
tycaseSig (Sig {fst, snd, _}) = pure (fst, snd)
tycaseSig (E e) {tnf} = do
ty <- computeElimType defs ctx e @{noOr2 tnf}
let fst = E $ typeCase1 e ty KSig [< "Fst", "Snd"] (BVT 1)
snd' = typeCase1 e (Arr Zero fst ty) KSig [< "Fst", "Snd"] (BVT 0)
let fst = E $ typeCase1Y e ty KSig [< "Fst", "Snd"] (BVT 1)
snd' = typeCase1Y e (Arr Zero fst ty) KSig [< "Fst", "Snd"] (BVT 0)
snd = SY [< "Fst"] $ E $ weakE 1 snd' :@ BVT 0
pure (fst, snd)
tycaseSig t = Left $ ExpectedSig ctx.names t
@ -281,7 +281,7 @@ mutual
tycaseBOX (BOX _ a) = pure a
tycaseBOX (E e) {tnf} = do
ty <- computeElimType defs ctx e @{noOr2 tnf}
pure $ E $ typeCase1 e ty KBOX [< "Ty"] (BVT 0)
pure $ E $ typeCase1Y e ty KBOX [< "Ty"] (BVT 0)
tycaseBOX t = Left $ ExpectedBOX ctx.names t
||| for Eq [i ⇒ A] l r, returns (A0/i, A1/i, A, l, r);
@ -295,12 +295,12 @@ mutual
tycaseEq (E e) {tnf} = do
ty <- computeElimType defs ctx e @{noOr2 tnf}
let names = [< "A0", "A1", "A", "L", "R"]
a0 = E $ typeCase1 e ty KEq names (BVT 4)
a1 = E $ typeCase1 e ty KEq names (BVT 3)
a' = typeCase1 e (Eq0 ty a0 a1) KEq names (BVT 2)
a0 = E $ typeCase1Y e ty KEq names (BVT 4)
a1 = E $ typeCase1Y e ty KEq names (BVT 3)
a' = typeCase1Y e (Eq0 ty a0 a1) KEq names (BVT 2)
a = SY [< "i"] $ E $ dweakE 1 a' :% BV 0
l = E $ typeCase1 e a0 KEq names (BVT 1)
r = E $ typeCase1 e a1 KEq names (BVT 0)
l = E $ typeCase1Y e a0 KEq names (BVT 1)
r = E $ typeCase1Y e a1 KEq names (BVT 0)
pure (a0, a1, a, l, r)
tycaseEq t = Left $ ExpectedEq ctx.names t
@ -310,20 +310,20 @@ mutual
private covering
piCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val, s : Term d n) ->
Either Error (Subset (Elim d n) (No . isRedexE defs))
piCoe sty@(S i ty) p q val s = do
piCoe sty@(S [< i] ty) p q val s = do
-- (coe [i ⇒ π.(x : A) → B] @p @q t) s ⇝
-- coe [i ⇒ B[𝒔i/x] @p @q ((t ∷ (π.(x : A) → B)p/i) 𝒔p)
-- where 𝒔j ≔ coe [i ⇒ A] @q @j s
--
-- type-case is used to expose A,B if the type is neutral
let ctx1 = extendDimN i ctx
let ctx1 = extendDim i ctx
Element ty tynf <- whnf defs ctx1 ty.term
(arg, res) <- tycasePi defs ctx1 ty
let s0 = Coe (SY i arg) q p s
let s0 = CoeT i arg q p s
body = E $ (val :# (ty // one p)) :@ E s0
s1 = Coe (SY i (arg // (BV 0 ::: shift 2))) (weakD 1 q) (BV 0)
(s // shift 1)
whnf defs ctx $ Coe (SY i $ sub1 res s1) p q body
s1 = CoeT i (arg // (BV 0 ::: shift 2)) (weakD 1 q) (BV 0)
(s // shift 1)
whnf defs ctx $ CoeT i (sub1 res s1) p q body
||| reduce a pair elimination `CasePair pi (Coe ty p q val) ret body`
private covering
@ -331,7 +331,7 @@ mutual
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(ret : ScopeTerm d n) -> (body : ScopeTermN 2 d n) ->
Either Error (Subset (Elim d n) (No . isRedexE defs))
sigCoe qty sty@(S i ty) p q val ret body = do
sigCoe qty sty@(S [< i] ty) p q val ret body = do
-- caseπ (coe [i ⇒ (x : A) × B] @p @q s) return z ⇒ C of { (a, b) ⇒ e }
-- ⇝
-- caseπ s ∷ ((x : A) × B)p/i return z ⇒ C
@ -340,33 +340,33 @@ mutual
-- (coe [i ⇒ B[(coe [j ⇒ Aj/i] @p @i a)/x]] @p @q b)/b] }
--
-- type-case is used to expose A,B if the type is neutral
let ctx1 = extendDimN i ctx
let ctx1 = extendDim i ctx
Element ty tynf <- whnf defs ctx1 ty.term
(tfst, tsnd) <- tycaseSig defs ctx1 ty
let a' = Coe (SY i $ weakT 2 tfst) p q (BVT 1)
let a' = CoeT i (weakT 2 tfst) p q (BVT 1)
tsnd' = tsnd.term //
(Coe (SY i $ weakT 2 $ tfst // (BV 0 ::: shift 2))
(CoeT i (weakT 2 $ tfst // (BV 0 ::: shift 2))
(weakD 1 p) (BV 0) (BVT 1) ::: shift 2)
b' = Coe (SY i tsnd') p q (BVT 0)
b' = CoeT i tsnd' p q (BVT 0)
whnf defs ctx $ CasePair qty (val :# (ty // one p)) ret $
SY body.names $ body.term // (a' ::: b' ::: shift 2)
ST body.names $ body.term // (a' ::: b' ::: shift 2)
||| reduce a dimension application `Coe ty p q val :% r`
private covering
eqCoe : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(r : Dim d) ->
Either Error (Subset (Elim d n) (No . isRedexE defs))
eqCoe sty@(S j ty) p q val r = do
eqCoe sty@(S [< j] ty) p q val r = do
-- (coe [j ⇒ Eq [i ⇒ A] L R] @p @q eq) @r
-- ⇝
-- comp [j ⇒ Ar/i] @p @q (eq ∷ (Eq [i ⇒ A] L R)p/j)
-- { (r=0) j ⇒ L; (r=1) j ⇒ R }
let ctx1 = extendDimN j ctx
let ctx1 = extendDim j ctx
Element ty tynf <- whnf defs ctx1 ty.term
(a0, a1, a, s, t) <- tycaseEq defs ctx1 ty
let a' = SY j $ dsub1 a (weakD 1 r)
let a' = dsub1 a (weakD 1 r)
val' = E $ (val :# (ty // one p)) :% r
whnf defs ctx $ CompH a' p q val' r (SY j s) (SY j t)
whnf defs ctx $ CompH j a' p q val' r j s j t
||| reduce a pair elimination `CaseBox pi (Coe ty p q val) ret body`
private covering
@ -374,17 +374,17 @@ mutual
(ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(ret : ScopeTerm d n) -> (body : ScopeTerm d n) ->
Either Error (Subset (Elim d n) (No . isRedexE defs))
boxCoe qty sty@(S i ty) p q val ret body = do
boxCoe qty sty@(S [< i] ty) p q val ret body = do
-- caseπ (coe [i ⇒ [ρ. A]] @p @q s) return z ⇒ C of { [a] ⇒ e }
-- ⇝
-- caseπ s ∷ [ρ. A]p/i return z ⇒ C
-- of { [a] ⇒ e[(coe [i ⇒ A] p q a)/a] }
let ctx1 = extendDimN i ctx
let ctx1 = extendDim i ctx
Element ty tynf <- whnf defs ctx1 ty.term
ta <- tycaseBOX defs ctx1 ty
let a' = Coe (SY i $ weakT 1 ta) p q $ BVT 0
let a' = CoeT i (weakT 1 ta) p q $ BVT 0
whnf defs ctx $ CaseBox qty (val :# (ty // one p)) ret $
SY body.names $ body.term // (a' ::: shift 1)
ST body.names $ body.term // (a' ::: shift 1)
export covering
@ -641,8 +641,8 @@ mutual
-- just η expand it. then whnf for (:@) will handle it later
-- this is how @xtt does it
Lam body => do
let body' = Coe (SY [< i] ty) p q (Lam body)
term' = Lam (SY [< "y"] $ E $ weakE 1 body' :@ BVT 0)
let body' = CoeT i ty p q $ Lam body
term' = [< "y"] :\\ E (weakE 1 body' :@ BVT 0)
type' = ty // one q
whnf defs ctx $ term' :# type'
@ -654,10 +654,10 @@ mutual
Lam body => do
let Pi {qty, arg, res} = ty
| _ => Left $ ?err
let arg' = SY [< "j"] $ weakT 1 $ arg // (BV 0 ::: shift 2)
res' = SY [< i] $ res.term //
let arg' = ST [< "j"] $ weakT 1 $ arg // (BV 0 ::: shift 2)
res' = ST [< i] $ res.term //
(Coe arg' (weakD 1 q) (BV 0) (BVT 0) ::: shift 1)
body = SY body.names $ E $ Coe res' p q body.term
body = ST body.names $ E $ Coe res' p q body.term
pure $ Element (Lam body :# Pi qty (arg // one q) (res // one q)) Ah
-}
@ -670,18 +670,17 @@ mutual
Pair fst snd => do
let Sig {fst = tfst, snd = tsnd} = ty
| _ => Left $ ExpectedSig (extendDim i ctx.names) ty
let fst' = E $ Coe (SY [< i] tfst) p q fst
tfst' = SY [< "j"] $ tfst `CanDSubst.(//)` (BV 0 ::: shift 2)
tsnd' = SY [< i] $ sub1 tsnd $
Coe tfst' (weakD 1 p) (BV 0) $ dweakT 1 fst
snd' = E $ Coe tsnd' p q snd
let fst' = E $ CoeT i tfst p q fst
tfst' = tfst // (BV 0 ::: shift 2)
tsnd' = sub1 tsnd $ CoeT "j" tfst' (weakD 1 p) (BV 0) $ dweakT 1 fst
snd' = E $ CoeT i tsnd' p q snd
pure $
Element (Pair fst' snd' :# Sig (tfst // one q) (tsnd // one q)) Ah
-- η expand like λ
DLam body => do
let body' = Coe (SY [< i] ty) p q (DLam body)
term' = DLam (SY [< "j"] $ E $ dweakE 1 body' :% BV 0)
let body' = CoeT i ty p q $ DLam body
term' = [< "j"] :\\% E (dweakE 1 body' :% BV 0)
type' = ty // one q
whnf defs ctx $ term' :# type'
@ -700,10 +699,9 @@ mutual
Box val => do
let BOX {qty, ty = a} = ty
| _ => Left $ ExpectedBOX (extendDim i ctx.names) ty
let a = SY [< i] a
pure $ Element (Box (E $ Coe a p q s) :# BOX qty (dsub1 a q)) Ah
pure $ Element (Box (E $ CoeT i a p q s) :# BOX qty (a // one q)) Ah
E e => pure $ Element (Coe (SY [< i] ty) p q (E e)) (snf `orNo` Ah)
E e => pure $ Element (CoeT i ty p q (E e)) (snf `orNo` Ah)
where
unwrapTYPE : Term (S d) n -> Either Error Universe
unwrapTYPE (TYPE u) = pure u

View file

@ -11,7 +11,7 @@ import Data.So
||| represents the difference between a smaller scope and a larger one.
public export
data Shift : (0 from, to : Nat) -> Type where
data Shift : (from, to : Nat) -> Type where
SZ : Shift from from
SS : Shift from to -> Shift from (S to)
%name Shift by, bz
@ -120,6 +120,25 @@ ssDownViaNat by =
%transform "Shift.ssDown" ssDown = ssDownViaNat
public export
weak : (s : Nat) -> Shift from to -> Shift (s + from) (s + to)
weak s SZ = SZ
weak s (SS by) {to = S to} =
rewrite sym $ plusSuccRightSucc s to in
SS $ weak s by
private
weakViaNat : (s : Nat) -> Shift from to -> Shift (s + from) (s + to)
weakViaNat s by =
rewrite shiftDiff by in
rewrite plusAssociative s by.nat from in
rewrite plusCommutative s by.nat in
rewrite sym $ plusAssociative by.nat s from in
fromNat by.nat
%transform "Shift.weak" Shift.weak = weakViaNat
public export
shift : Shift from to -> Var from -> Var to
shift SZ i = i

View file

@ -18,6 +18,12 @@ data Subst : (Nat -> Type) -> Nat -> Nat -> Type where
(:::) : (t : Lazy (env to)) -> Subst env from to -> Subst env (S from) to
%name Subst th, ph, ps
infixr 7 !:::
||| in case the automatic laziness insertion gets confused
public export
(!:::) : env to -> Subst env from to -> Subst env (S from) to
t !::: ts = t ::: ts
private
Repr : (Nat -> Type) -> Nat -> Type
@ -74,6 +80,13 @@ public export %inline
id : Subst f n n
id = shift 0
public export
traverse : Applicative m =>
(f to -> m (g to)) -> Subst f from to -> m (Subst g from to)
traverse f (Shift by) = pure $ Shift by
traverse f (t ::: th) = [|f t !::: traverse f th|]
-- not in terms of traverse because this map can maintain laziness better
public export
map : (f to -> g to) -> Subst f from to -> Subst g from to
map f (Shift by) = Shift by

View file

@ -4,3 +4,4 @@ import public Quox.Syntax.Term.Base
import public Quox.Syntax.Term.Split
import public Quox.Syntax.Term.Subst
import public Quox.Syntax.Term.Pretty
import public Quox.Syntax.Term.Tighten

View file

@ -228,9 +228,9 @@ s.name = name s
||| more convenient Pi
public export %inline
Pi_ : (qty : Qty) -> (x : BaseName) ->
PiY : (qty : Qty) -> (x : BaseName) ->
(arg : Term d n) -> (res : Term d (S n)) -> Term d n
Pi_ {qty, x, arg, res} = Pi {qty, arg, res = S [< x] $ Y res}
PiY {qty, x, arg, res} = Pi {qty, arg, res = SY [< x] res}
||| non dependent function type
public export %inline
@ -239,9 +239,9 @@ Arr {qty, arg, res} = Pi {qty, arg, res = SN res}
||| more convenient Sig
public export %inline
Sig_ : (x : BaseName) -> (fst : Term d n) ->
SigY : (x : BaseName) -> (fst : Term d n) ->
(snd : Term d (S n)) -> Term d n
Sig_ {x, fst, snd} = Sig {fst, snd = S [< x] $ Y snd}
SigY {x, fst, snd} = Sig {fst, snd = SY [< x] snd}
||| non dependent pair type
public export %inline
@ -250,9 +250,9 @@ And {fst, snd} = Sig {fst, snd = SN snd}
||| more convenient Eq
public export %inline
Eq_ : (i : BaseName) -> (ty : Term (S d) n) ->
EqY : (i : BaseName) -> (ty : Term (S d) n) ->
(l, r : Term d n) -> Term d n
Eq_ {i, ty, l, r} = Eq {ty = S [< i] $ Y ty, l, r}
EqY {i, ty, l, r} = Eq {ty = SY [< i] ty, l, r}
||| non dependent equality type
public export %inline
@ -290,9 +290,9 @@ typeCase : Elim d n -> Term d n ->
typeCase ty ret arms def = TypeCase ty ret (fromList arms) def
public export %inline
typeCase1 : Elim d n -> Term d n ->
(k : TyConKind) -> NContext (arity k) -> Term d (arity k + n) ->
{default Nat def : Term d n} ->
Elim d n
typeCase1 ty ret k ns body {def} =
typeCase1Y : Elim d n -> Term d n ->
(k : TyConKind) -> NContext (arity k) -> Term d (arity k + n) ->
{default Nat def : Term d n} ->
Elim d n
typeCase1Y ty ret k ns body {def} =
typeCase ty ret [(k ** SY ns body)] def

View file

@ -2,6 +2,7 @@ module Quox.Syntax.Term.Split
import Quox.Syntax.Term.Base
import Quox.Syntax.Term.Subst
import Quox.Syntax.Term.Tighten
import Quox.Context
import public Quox.No
@ -133,7 +134,7 @@ infixr 1 :\\
public export
absN : NContext m -> Term d (m + n) -> Term d n
absN [<] s = s
absN (xs :< x) s = absN xs $ Lam $ SY [< x] s
absN (xs :< x) s = absN xs $ Lam $ ST [< x] s
public export %inline
(:\\) : NContext m -> Term d (m + n) -> Term d n
@ -144,7 +145,7 @@ infixr 1 :\\%
public export
dabsN : NContext m -> Term (m + d) n -> Term d n
dabsN [<] s = s
dabsN (xs :< x) s = dabsN xs $ DLam $ SY [< x] s
dabsN (xs :< x) s = dabsN xs $ DLam $ DST [< x] s
public export %inline
(:\\%) : NContext m -> Term (m + d) n -> Term d n

View file

@ -2,6 +2,7 @@ module Quox.Syntax.Term.Subst
import Quox.No
import Quox.Syntax.Term.Base
import Quox.Syntax.Term.Tighten
import Data.SnocVect
%default total
@ -320,6 +321,29 @@ mutual
pushSubstsWith (ps . th) ph e
private %inline
CompHY : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(r : Dim d) -> (zero, one : DScopeTerm d n) -> Elim d n
CompHY {ty, p, q, val, r, zero, one} =
let ty' = SY ty.names $ ty.term // (B VZ ::: shift 2) in
Comp {
ty = dsub1 ty q, p, q,
val = E $ Coe ty p q val, r,
zero = SY zero.names $ E $ Coe ty' (B VZ) (weakD 1 q) zero.term,
one = SY one.names $ E $ Coe ty' (B VZ) (weakD 1 q) one.term
}
public export %inline
CompH' : (ty : DScopeTerm d n) ->
(p, q : Dim d) -> (val : Term d n) -> (r : Dim d) ->
(zero : DScopeTerm d n) ->
(one : DScopeTerm d n) ->
Elim d n
CompH' {ty, p, q, val, r, zero, one} =
case dsqueeze ty of
S _ (N ty) => Comp {ty, p, q, val, r, zero, one}
S _ (Y _) => CompHY {ty, p, q, val, r, zero, one}
||| heterogeneous composition, using Comp and Coe (and subst)
|||
||| comp [i ⇒ A] @p @q s { (r=0) j ⇒ t₀; (r=1) j ⇒ t₁ }
@ -329,13 +353,11 @@ mutual
||| (r=1) j ⇒ coe [i ⇒ A] @j @q t₁
||| }
public export %inline
CompH : (ty : DScopeTerm d n) -> (p, q : Dim d) -> (val : Term d n) ->
(r : Dim d) -> (zero, one : DScopeTerm d n) -> Elim d n
CompH {ty, p, q, val, r, zero, one} =
let ty' = SY ty.names $ ty.term // (B VZ ::: shift 2) in
Comp {
ty = dsub1 ty q, p, q,
val = E $ Coe ty p q val, r,
zero = SY zero.names $ E $ Coe ty' (B VZ) (weakD 1 q) zero.term,
one = SY one.names $ E $ Coe ty' (B VZ) (weakD 1 q) one.term
}
CompH : (i : BaseName) -> (ty : Term (S d) n) ->
(p, q : Dim d) -> (val : Term d n) -> (r : Dim d) ->
(j0 : BaseName) -> (zero : Term (S d) n) ->
(j1 : BaseName) -> (one : Term (S d) n) ->
Elim d n
CompH {i, ty, p, q, val, r, j0, zero, j1, one} =
CompH' {ty = SY [< i] ty, p, q, val, r,
zero = SY [< j0] zero, one = SY [< j0] one}

View file

@ -0,0 +1,274 @@
module Quox.Syntax.Term.Tighten
import Quox.Syntax.Term.Base
import Quox.Syntax.Subst
import public Quox.OPE
%default total
export
Tighten (Shift from) where
-- `OPE m n` is a spicy `m ≤ n`,
-- and `Shift from n` is a (different) spicy `from ≤ n`
-- so the value is `from ≤ m` (as a `Shift`), if that is the case
tighten _ SZ = Nothing
tighten Id by = Just by
tighten (Drop p) (SS by) = tighten p by
tighten (Keep p) (SS by) = [|SS $ tighten p by|]
export
tightenSub : (forall m, n. OPE m n -> env n -> Maybe (env m)) ->
OPE to1 to2 -> Subst env from to2 -> Maybe (Subst env from to1)
tightenSub f p (Shift by) = [|Shift $ tighten p by|]
tightenSub f p (t ::: th) = [|f p t !::: tightenSub f p th|]
export
Tighten env => Tighten (Subst env from) where
tighten p th = tightenSub tighten p th
export
tightenScope : (forall m, n. OPE m n -> f n -> Maybe (f m)) ->
{s : Nat} -> OPE m n -> Scoped s f n -> Maybe (Scoped s f m)
tightenScope f p (S names (Y body)) = SY names <$> f (keepN s p) body
tightenScope f p (S names (N body)) = S names . N <$> f p body
export
tightenDScope : {0 f : Nat -> Nat -> Type} ->
(forall m, n, k. OPE m n -> f n k -> Maybe (f m k)) ->
OPE m n -> Scoped s (f n) k -> Maybe (Scoped s (f m) k)
tightenDScope f p (S names (Y body)) = SY names <$> f p body
tightenDScope f p (S names (N body)) = S names . N <$> f p body
mutual
private
tightenT : OPE n1 n2 -> Term d n2 -> Maybe (Term d n1)
tightenT p (TYPE l) = pure $ TYPE l
tightenT p (Pi qty arg res) =
Pi qty <$> tightenT p arg <*> tightenS p res
tightenT p (Lam body) = Lam <$> tightenS p body
tightenT p (Sig fst snd) = Sig <$> tightenT p fst <*> tightenS p snd
tightenT p (Pair fst snd) = Pair <$> tightenT p fst <*> tightenT p snd
tightenT p (Enum cases) = pure $ Enum cases
tightenT p (Tag tag) = pure $ Tag tag
tightenT p (Eq ty l r) =
Eq <$> tightenDS p ty <*> tightenT p l <*> tightenT p r
tightenT p (DLam body) = DLam <$> tightenDS p body
tightenT p Nat = pure Nat
tightenT p Zero = pure Zero
tightenT p (Succ s) = Succ <$> tightenT p s
tightenT p (BOX qty ty) = BOX qty <$> tightenT p ty
tightenT p (Box val) = Box <$> tightenT p val
tightenT p (E e) = assert_total $ E <$> tightenE p e
tightenT p (CloT tm th) = do
th <- assert_total $ tightenSub tightenE p th
pure $ CloT tm th
tightenT p (DCloT tm th) = [|DCloT (tightenT p tm) (pure th)|]
private
tightenE : OPE n1 n2 -> Elim d n2 -> Maybe (Elim d n1)
tightenE p (F x) = pure $ F x
tightenE p (B i) = [|B $ tighten p i|]
tightenE p (fun :@ arg) = [|tightenE p fun :@ tightenT p arg|]
tightenE p (CasePair qty pair ret body) =
CasePair qty <$> tightenE p pair
<*> tightenS p ret
<*> tightenS p body
tightenE p (CaseEnum qty tag ret arms) =
CaseEnum qty <$> tightenE p tag
<*> tightenS p ret
<*> traverse (tightenT p) arms
tightenE p (CaseNat qty qtyIH nat ret zero succ) =
CaseNat qty qtyIH
<$> tightenE p nat
<*> tightenS p ret
<*> tightenT p zero
<*> tightenS p succ
tightenE p (CaseBox qty box ret body) =
CaseBox qty <$> tightenE p box
<*> tightenS p ret
<*> tightenS p body
tightenE p (fun :% arg) = (:% arg) <$> tightenE p fun
tightenE p (tm :# ty) = [|tightenT p tm :# tightenT p ty|]
tightenE p (Coe ty q0 q1 val) =
Coe <$> tightenDS p ty
<*> pure q0 <*> pure q1
<*> tightenT p val
tightenE p (Comp ty q0 q1 val r zero one) =
Comp <$> tightenT p ty
<*> pure q0 <*> pure q1
<*> tightenT p val
<*> pure r
<*> tightenDS p zero
<*> tightenDS p one
tightenE p (TypeCase ty ret arms def) =
TypeCase <$> tightenE p ty
<*> tightenT p ret
<*> traverse (tightenS p) arms
<*> tightenT p def
tightenE p (CloE el th) = do
th <- assert_total $ tightenSub tightenE p th
pure $ CloE el th
tightenE p (DCloE el th) = [|DCloE (tightenE p el) (pure th)|]
export
tightenS : {s : Nat} -> OPE m n ->
ScopeTermN s f n -> Maybe (ScopeTermN s f m)
tightenS = assert_total $ tightenScope tightenT
export
tightenDS : OPE m n -> DScopeTermN s f n -> Maybe (DScopeTermN s f m)
tightenDS = assert_total $ tightenDScope tightenT {f = \n, d => Term d n}
export Tighten (Elim d) where tighten p e = tightenE p e
export Tighten (Term d) where tighten p t = tightenT p t
export
Tighten Dim where
tighten p (K e) = pure $ K e
tighten p (B i) = B <$> tighten p i
mutual
export
dtightenT : OPE d1 d2 -> Term d2 n -> Maybe (Term d1 n)
dtightenT p (TYPE l) = pure $ TYPE l
dtightenT p (Pi qty arg res) =
Pi qty <$> dtightenT p arg <*> dtightenS p res
dtightenT p (Lam body) =
Lam <$> dtightenS p body
dtightenT p (Sig fst snd) =
Sig <$> dtightenT p fst <*> dtightenS p snd
dtightenT p (Pair fst snd) =
Pair <$> dtightenT p fst <*> dtightenT p snd
dtightenT p (Enum cases) = pure $ Enum cases
dtightenT p (Tag tag) = pure $ Tag tag
dtightenT p (Eq ty l r) =
Eq <$> dtightenDS p ty <*> dtightenT p l <*> dtightenT p r
dtightenT p (DLam body) = DLam <$> dtightenDS p body
dtightenT p Nat = pure Nat
dtightenT p Zero = pure Zero
dtightenT p (Succ s) = Succ <$> dtightenT p s
dtightenT p (BOX qty ty) = BOX qty <$> dtightenT p ty
dtightenT p (Box val) = Box <$> dtightenT p val
dtightenT p (E e) = assert_total $ E <$> dtightenE p e
dtightenT p (CloT tm th) = do
tm <- dtightenT p tm
th <- assert_total $ traverse (dtightenE p) th
pure $ CloT tm th
dtightenT p (DCloT tm th) = do th <- tighten p th; pure $ DCloT tm th
export
dtightenE : OPE d1 d2 -> Elim d2 n -> Maybe (Elim d1 n)
dtightenE p (F x) = pure $ F x
dtightenE p (B i) = pure $ B i
dtightenE p (fun :@ arg) = [|dtightenE p fun :@ dtightenT p arg|]
dtightenE p (CasePair qty pair ret body) =
CasePair qty <$> dtightenE p pair
<*> dtightenS p ret
<*> dtightenS p body
dtightenE p (CaseEnum qty tag ret arms) =
CaseEnum qty <$> dtightenE p tag
<*> dtightenS p ret
<*> traverse (dtightenT p) arms
dtightenE p (CaseNat qty qtyIH nat ret zero succ) =
CaseNat qty qtyIH
<$> dtightenE p nat
<*> dtightenS p ret
<*> dtightenT p zero
<*> dtightenS p succ
dtightenE p (CaseBox qty box ret body) =
CaseBox qty <$> dtightenE p box
<*> dtightenS p ret
<*> dtightenS p body
dtightenE p (fun :% arg) = [|dtightenE p fun :% tighten p arg|]
dtightenE p (tm :# ty) = [|dtightenT p tm :# dtightenT p ty|]
dtightenE p (Coe ty q0 q1 val) =
[|Coe (dtightenDS p ty) (tighten p q0) (tighten p q1) (dtightenT p val)|]
dtightenE p (Comp ty q0 q1 val r zero one) =
[|Comp (dtightenT p ty) (tighten p q0) (tighten p q1)
(dtightenT p val) (tighten p r)
(dtightenDS p zero) (dtightenDS p one)|]
dtightenE p (TypeCase ty ret arms def) =
[|TypeCase (dtightenE p ty) (dtightenT p ret)
(traverse (dtightenS p) arms) (dtightenT p def)|]
dtightenE p (CloE el th) = do
el <- dtightenE p el
th <- assert_total $ traverse (dtightenE p) th
pure $ CloE el th
dtightenE p (DCloE el th) = do
th <- tighten p th
pure $ DCloE el th
export
dtightenS : OPE d1 d2 -> ScopeTermN s d2 n -> Maybe (ScopeTermN s d1 n)
dtightenS = assert_total $ tightenDScope dtightenT {f = Term}
export
dtightenDS : {s : Nat} -> OPE d1 d2 ->
DScopeTermN s d2 n -> Maybe (DScopeTermN s d1 n)
dtightenDS = assert_total $ tightenScope dtightenT
export [TermD] Tighten (\d => Term d n) where tighten p t = dtightenT p t
export [ElimD] Tighten (\d => Elim d n) where tighten p e = dtightenE p e
-- versions of SY, etc, that try to tighten and use SN automatically
public export
ST : Tighten f => {s : Nat} -> NContext s -> f (s + n) -> Scoped s f n
ST names body =
case tightenN s body of
Just body => S names $ N body
Nothing => S names $ Y body
public export
DST : {s : Nat} -> NContext s -> Term (s + d) n -> DScopeTermN s d n
DST names body =
case tightenN @{TermD} s body of
Just body => S names $ N body
Nothing => S names $ Y body
public export %inline
PiT : (qty : Qty) -> (x : BaseName) ->
(arg : Term d n) -> (res : Term d (S n)) -> Term d n
PiT {qty, x, arg, res} = Pi {qty, arg, res = ST [< x] res}
public export %inline
SigT : (x : BaseName) -> (fst : Term d n) ->
(snd : Term d (S n)) -> Term d n
SigT {x, fst, snd} = Sig {fst, snd = ST [< x] snd}
public export %inline
EqT : (i : BaseName) -> (ty : Term (S d) n) ->
(l, r : Term d n) -> Term d n
EqT {i, ty, l, r} = Eq {ty = DST [< i] ty, l, r}
public export %inline
CoeT : (i : BaseName) -> (ty : Term (S d) n) ->
(p, q : Dim d) -> (val : Term d n) -> Elim d n
CoeT {i, ty, p, q, val} = Coe {ty = DST [< i] ty, p, q, val}
public export %inline
typeCase1T : Elim d n -> Term d n ->
(k : TyConKind) -> NContext (arity k) -> Term d (arity k + n) ->
{default Nat def : Term d n} ->
Elim d n
typeCase1T ty ret k ns body {def} =
typeCase ty ret [(k ** ST ns body)] def
export
squeeze : {s : Nat} -> ScopeTermN s d n -> ScopeTermN s d n
squeeze (S names (Y body)) = S names $ maybe (Y body) N $ tightenN s body
squeeze (S names (N body)) = S names $ N body
export
dsqueeze : {s : Nat} -> DScopeTermN s d n -> DScopeTermN s d n
dsqueeze (S names (Y body)) =
S names $ maybe (Y body) N $ tightenN s body @{TermD}
dsqueeze (S names (N body)) = S names $ N body

View file

@ -2,10 +2,11 @@ module Quox.Syntax.Var
import Quox.Name
import Quox.Pretty
-- import Quox.OPE
import Quox.OPE
import Data.Nat
import Data.List
import Data.Vect
import public Quox.Decidable
import Data.Bool.Decidable
import Data.DPair
@ -151,6 +152,16 @@ interface FromVar f where %inline fromVar : Var n -> f n
public export FromVar Var where fromVar = id
export
tabulateV : {0 tm : Nat -> Type} -> (forall n. Var n -> tm n) ->
(n : Nat) -> Vect n (tm n)
tabulateV f 0 = []
tabulateV f (S n) = f VZ :: tabulateV (f . VS) n
export
allVars : (n : Nat) -> Vect n (Var n)
allVars n = tabulateV id n
public export
data LT : Rel (Var n) where
@ -287,3 +298,12 @@ decEqFromBool i j =
%transform "Var.decEq" varDecEq = decEqFromBool
public export %inline DecEq (Var n) where decEq = varDecEq
export
Tighten Var where
tighten Id i = Just i
tighten (Drop p) VZ = Nothing
tighten (Drop p) (VS i) = tighten p i
tighten (Keep p) VZ = Just VZ
tighten (Keep p) (VS i) = VS <$> tighten p i

View file

@ -1,196 +0,0 @@
||| "order preserving embeddings", for recording a correspondence between
||| a smaller scope and part of a larger one.
module Quox.OPE
import Quox.NatExtra
import Data.Nat
%default total
public export
data OPE : Nat -> Nat -> Type where
Id : OPE n n
Drop : OPE m n -> OPE m (S n)
Keep : OPE m n -> OPE (S m) (S n)
%name OPE p, q
public export %inline Injective Drop where injective Refl = Refl
public export %inline Injective Keep where injective Refl = Refl
public export
opeZero : {n : Nat} -> OPE 0 n
opeZero {n = 0} = Id
opeZero {n = S n} = Drop opeZero
public export
(.) : OPE m n -> OPE n p -> OPE m p
p . Id = p
Id . q = q
p . Drop q = Drop $ p . q
Drop p . Keep q = Drop $ p . q
Keep p . Keep q = Keep $ p . q
public export
toLTE : {m : Nat} -> OPE m n -> m `LTE` n
toLTE Id = reflexive
toLTE (Drop p) = lteSuccRight $ toLTE p
toLTE (Keep p) = LTESucc $ toLTE p
public export
dropInner' : LTE' m n -> OPE m n
dropInner' LTERefl = Id
dropInner' (LTESuccR p) = Drop $ dropInner' $ force p
public export
dropInner : {n : Nat} -> LTE m n -> OPE m n
dropInner = dropInner' . fromLte
public export
dropInnerN : (m : Nat) -> OPE n (m + n)
dropInnerN 0 = Id
dropInnerN (S m) = Drop $ dropInnerN m
public export
interface Tighten t where
tighten : Alternative f => OPE m n -> t n -> f (t m)
parameters {auto _ : Tighten t} {auto _ : Alternative f}
export
tightenInner : {n : Nat} -> m `LTE` n -> t n -> f (t m)
tightenInner = tighten . dropInner
export
tightenN : (m : Nat) -> t (m + n) -> f (t n)
tightenN m = tighten $ dropInnerN m
export
tighten1 : t (S n) -> f (t n)
tighten1 = tightenN 1
-- [todo] can this be done with fancy nats too?
-- with bitmasks sure but that might not be worth the effort
-- [the next day] it probably isn't
-- public export
-- data OPE' : Nat -> Nat -> Type where
-- None : OPE' 0 0
-- Drop : OPE' m n -> OPE' m (S n)
-- Keep : OPE' m n -> OPE' (S m) (S n)
-- %name OPE' q
-- public export %inline
-- drop' : Integer -> Integer
-- drop' n = n * 2
-- public export %inline
-- keep' : Integer -> Integer
-- keep' n = 1 + 2 * n
-- public export
-- data IsOPE : Integer -> (OPE' m n) -> Type where
-- IsNone : 0 `IsOPE` None
-- IsDrop : (0 _ : m `IsOPE` q) -> drop' m `IsOPE` Drop q
-- IsKeep : (0 _ : m `IsOPE` q) -> keep' m `IsOPE` Keep q
-- %name IsOPE p
-- public export
-- record OPE m n where
-- constructor MkOPE
-- value : Integer
-- 0 spec : OPE' m n
-- 0 prf : value `IsOPE` spec
-- 0 pos : So (value >= 0)
-- private
-- 0 idrisPleaseLearnAboutIntegers : {x, y : Integer} -> x = y
-- idrisPleaseLearnAboutIntegers {x, y} = believe_me $ Refl {x}
-- private
-- 0 natIntPlus : (m, n : Nat) ->
-- natToInteger (m + n) = natToInteger m + natToInteger n
-- natIntPlus m n = idrisPleaseLearnAboutIntegers
-- private
-- 0 shiftTwice : (x : Integer) -> (m, n : Nat) ->
-- x `shiftL` (m + n) = (x `shiftL` m) `shiftL` n
-- shiftTwice x m n = idrisPleaseLearnAboutIntegers
-- private
-- 0 shift1 : (x : Integer) -> (x `shiftL` 1) = 2 * x
-- shift1 x = idrisPleaseLearnAboutIntegers
-- private
-- 0 intPlusComm : (x, y : Integer) -> (x + y) = (y + x)
-- intPlusComm x y = idrisPleaseLearnAboutIntegers
-- private
-- 0 intTimes2Minus1 : (x : Integer) -> 2 * x - 1 = 2 * (x - 1) + 1
-- intTimes2Minus1 x = idrisPleaseLearnAboutIntegers
-- private
-- 0 intPosShift : So (x > 0) -> So (x `shiftL` i > 0)
-- intPosShift p = believe_me Oh
-- private
-- 0 intNonnegDec : {x : Integer} -> So (x > 0) -> So (x - 1 >= 0)
-- intNonnegDec p = believe_me Oh
-- private
-- 0 shiftSucc : (x : Integer) -> (n : Nat) ->
-- x `shiftL` S n = 2 * (x `shiftL` n)
-- shiftSucc x n = Calc $
-- |~ x `shiftL` S n
-- ~~ x `shiftL` (n + 1)
-- ...(cong (x `shiftL`) $ sym $ plusCommutative {})
-- ~~ (x `shiftL` n) `shiftL` 1
-- ...(shiftTwice {})
-- ~~ 2 * (x `shiftL` n)
-- ...(shift1 {})
-- private
-- opeIdVal : (n : Nat) -> Integer
-- opeIdVal n = (1 `shiftL` n) - 1
-- private
-- 0 opeIdValSpec : (n : Nat) -> Integer
-- opeIdValSpec 0 = 0
-- opeIdValSpec (S n) = keep' $ opeIdValSpec n
-- private
-- 0 opeIdValOk : (n : Nat) -> opeIdVal n = opeIdValSpec n
-- opeIdValOk 0 = Refl
-- opeIdValOk (S n) = Calc $
-- |~ (1 `shiftL` S n) - 1
-- ~~ 2 * (1 `shiftL` n) - 1 ...(cong (\x => x - 1) $ shiftSucc {})
-- ~~ 2 * (1 `shiftL` n - 1) + 1 ...(intTimes2Minus1 {})
-- ~~ 1 + 2 * (1 `shiftL` n - 1) ...(intPlusComm {})
-- ~~ 1 + 2 * opeIdValSpec n ...(cong (\x => 1 + 2 * x) $ opeIdValOk {})
-- private
-- 0 opeIdSpec : (n : Nat) -> OPE' n n
-- opeIdSpec 0 = None
-- opeIdSpec (S n) = Keep $ opeIdSpec n
-- private
-- 0 opeIdProof' : (n : Nat) -> opeIdValSpec n `IsOPE` opeIdSpec n
-- opeIdProof' 0 = IsNone
-- opeIdProof' (S n) = IsKeep (opeIdProof' n)
-- private
-- 0 opeIdProof : (n : Nat) -> opeIdVal n `IsOPE` opeIdSpec n
-- opeIdProof n = rewrite opeIdValOk n in opeIdProof' n
-- export
-- opeId : {n : Nat} -> OPE n n
-- opeId {n} = MkOPE {prf = opeIdProof n, pos = intNonnegDec $ intPosShift Oh, _}

View file

@ -10,9 +10,11 @@ depends = base, contrib, elab-util, sop, snocvect, eff
modules =
Quox.BoolExtra,
Quox.CharExtra,
Quox.NatExtra,
Quox.EffExtra,
Quox.Decidable,
Quox.No,
Quox.OPE,
Quox.Pretty,
Quox.Syntax,
Quox.Syntax.Dim,
@ -23,6 +25,7 @@ modules =
Quox.Syntax.Term,
Quox.Syntax.Term.TyConKind,
Quox.Syntax.Term.Base,
Quox.Syntax.Term.Tighten,
Quox.Syntax.Term.Pretty,
Quox.Syntax.Term.Split,
Quox.Syntax.Term.Subst,

View file

@ -70,11 +70,11 @@ tests = "pretty printing terms" :- [
"function types" :- [
testPrettyT [<] [<] (Arr One (FT "A") (FT "B")) "1.A → B" "1.A -> B",
testPrettyT [<] [<]
(Pi_ One "x" (FT "A") (E $ F "B" :@ BVT 0))
(PiY One "x" (FT "A") (E $ F "B" :@ BVT 0))
"1.(x : A) → B x"
"1.(x : A) -> B x",
testPrettyT [<] [<]
(Pi_ Zero "A" (TYPE 0) $ Arr Any (BVT 0) (BVT 0))
(PiY Zero "A" (TYPE 0) $ Arr Any (BVT 0) (BVT 0))
"0.(A : ★₀) → ω.A → A"
"0.(A : Type0) -> #.A -> A",
testPrettyT [<] [<]
@ -86,7 +86,7 @@ tests = "pretty printing terms" :- [
"ω.A → ω.A → A"
"#.A -> #.A -> A",
testPrettyT [<] [<]
(Pi_ Zero "P" (Arr Zero (FT "A") (TYPE 0)) (E $ BV 0 :@ FT "a"))
(PiY Zero "P" (Arr Zero (FT "A") (TYPE 0)) (E $ BV 0 :@ FT "a"))
"0.(P : 0.A → ★₀) → P a"
"0.(P : 0.A -> Type0) -> P a"
],
@ -94,12 +94,12 @@ tests = "pretty printing terms" :- [
"pair types" :- [
testPrettyT [<] [<] (FT "A" `And` FT "B") "A × B" "A ** B",
testPrettyT [<] [<]
(Sig_ "x" (FT "A") (E $ F "B" :@ BVT 0))
(SigY "x" (FT "A") (E $ F "B" :@ BVT 0))
"(x : A) × B x"
"(x : A) ** B x",
testPrettyT [<] [<]
(Sig_ "x" (FT "A") $
Sig_ "y" (E $ F "B" :@ BVT 0) $
(SigY "x" (FT "A") $
SigY "y" (E $ F "B" :@ BVT 0) $
E $ F "C" :@@ [BVT 1, BVT 0])
"(x : A) × (y : B x) × C x y"
"(x : A) ** (y : B x) ** C x y",

View file

@ -33,8 +33,8 @@ inj = rethrow . mapFst TCError <=< lift . runExcept
reflTy : Term d n
reflTy =
Pi_ Zero "A" (TYPE 0) $
Pi_ One "x" (BVT 0) $
PiY Zero "A" (TYPE 0) $
PiY One "x" (BVT 0) $
Eq0 (BVT 1) (BVT 0) (BVT 0)
reflDef : Term d n
@ -43,9 +43,9 @@ reflDef = [< "A","x"] :\\ [< "i"] :\\% BVT 0
fstTy : Term d n
fstTy =
(Pi_ Zero "A" (TYPE 1) $
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Arr Any (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) (BVT 1))
(PiY Zero "A" (TYPE 1) $
PiY Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Arr Any (SigY "x" (BVT 1) $ E $ BV 1 :@ BVT 0) (BVT 1))
fstDef : Term d n
fstDef =
@ -54,9 +54,9 @@ fstDef =
sndTy : Term d n
sndTy =
(Pi_ Zero "A" (TYPE 1) $
Pi_ Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
Pi_ Any "p" (Sig_ "x" (BVT 1) $ E $ BV 1 :@ BVT 0) $
(PiY Zero "A" (TYPE 1) $
PiY Zero "B" (Arr Any (BVT 0) (TYPE 1)) $
PiY Any "p" (SigY "x" (BVT 1) $ E $ BV 1 :@ BVT 0) $
E (BV 1 :@ E (F "fst" :@@ [BVT 2, BVT 1, BVT 0])))
sndDef : Term d n
@ -80,8 +80,8 @@ defGlobals = fromList
("f", mkPostulate gany $ Arr One (FT "A") (FT "A")),
("g", mkPostulate gany $ Arr One (FT "A") (FT "B")),
("f2", mkPostulate gany $ Arr One (FT "A") $ Arr One (FT "A") (FT "B")),
("p", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate gany $ Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("p", mkPostulate gany $ PiY One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("q", mkPostulate gany $ PiY One "x" (FT "A") $ E $ F "P" :@ BVT 0),
("refl", mkDef gany reflTy reflDef),
("fst", mkDef gany fstTy fstDef),
("snd", mkDef gany sndTy sndDef)]
@ -185,7 +185,7 @@ tests = "typechecker" :- [
check_ empty szero (Arr One (FT "C") (FT "D")) (TYPE 0),
testTC "0 · (1·x : A) → P x ⇐ ★₀" $
check_ empty szero
(Pi_ One "x" (FT "A") $ E $ F "P" :@ BVT 0)
(PiY One "x" (FT "A") $ E $ F "P" :@ BVT 0)
(TYPE 0),
testTCFail "0 · A ⊸ P ⇍ ★₀" $
check_ empty szero (Arr One (FT "A") $ FT "P") (TYPE 0),
@ -201,14 +201,14 @@ tests = "typechecker" :- [
check_ empty szero (FT "A" `And` FT "P") (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₀" $
check_ empty szero
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 0),
(SigY "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 0),
testTC "0 · (x : A) × P x ⇐ ★₁" $
check_ empty szero
(Sig_ "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 1),
(SigY "x" (FT "A") $ E $ F "P" :@ BVT 0) (TYPE 1),
testTC "0 · (A : ★₀) × A ⇐ ★₁" $
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 1),
check_ empty szero (SigY "A" (TYPE 0) $ BVT 0) (TYPE 1),
testTCFail "0 · (A : ★₀) × A ⇍ ★₀" $
check_ empty szero (Sig_ "A" (TYPE 0) $ BVT 0) (TYPE 0),
check_ empty szero (SigY "A" (TYPE 0) $ BVT 0) (TYPE 0),
testTCFail "1 · A × A ⇍ ★₀" $
check_ empty sone (FT "A" `And` FT "A") (TYPE 0)
],
@ -282,7 +282,7 @@ tests = "typechecker" :- [
testTC "1 · (a, δ i ⇒ a) ⇐ (x : A) × (x ≡ a)" $
check_ empty sone
(Pair (FT "a") ([< "i"] :\\% FT "a"))
(Sig_ "x" (FT "A") $ Eq0 (FT "A") (BVT 0) (FT "a"))
(SigY "x" (FT "A") $ Eq0 (FT "A") (BVT 0) (FT "a"))
],
"unpairing" :- [
@ -334,7 +334,7 @@ tests = "typechecker" :- [
testTC "0 · snd ★₀ (λ x ⇒ x) ⇒ (ω·p : (A : ★₀) × A) → fst ★₀ (λ x ⇒ x) p" $
inferAs empty szero
(F "snd" :@@ [TYPE 0, [< "x"] :\\ BVT 0])
(Pi_ Any "A" (Sig_ "A" (TYPE 0) $ BVT 0) $
(PiY Any "A" (SigY "A" (TYPE 0) $ BVT 0) $
(E $ F "fst" :@@ [TYPE 0, [< "x"] :\\ BVT 0, BVT 0]))
],
@ -395,14 +395,14 @@ tests = "typechecker" :- [
testTC "0 · (λ p q ⇒ δ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ empty szero
([< "p","q"] :\\ [< "i"] :\\% BVT 1)
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
(PiY Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
PiY Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)),
testTC "0 · (λ p q ⇒ δ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $
check_ empty szero
([< "p","q"] :\\ [< "i"] :\\% BVT 0)
(Pi_ Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
Pi_ Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
(PiY Any "p" (Eq0 (FT "A") (FT "a") (FT "a")) $
PiY Any "q" (Eq0 (FT "A") (FT "a") (FT "a")) $
Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0))
],
@ -463,10 +463,10 @@ tests = "typechecker" :- [
testTC "cong" $
check_ empty sone
([< "x", "y", "xy"] :\\ [< "i"] :\\% E (F "p" :@ E (BV 0 :% BV 0)))
(Pi_ Zero "x" (FT "A") $
Pi_ Zero "y" (FT "A") $
Pi_ One "xy" (Eq0 (FT "A") (BVT 1) (BVT 0)) $
Eq_ "i" (E $ F "P" :@ E (BV 0 :% BV 0))
(PiY Zero "x" (FT "A") $
PiY Zero "y" (FT "A") $
PiY One "xy" (Eq0 (FT "A") (BVT 1) (BVT 0)) $
EqY "i" (E $ F "P" :@ E (BV 0 :% BV 0))
(E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)),
note "0·A : Type, 0·P : ω·A → Type,",
note "ω·p q : (1·x : A) → P x",
@ -476,11 +476,11 @@ tests = "typechecker" :- [
testTC "funext" $
check_ empty sone
([< "eq"] :\\ [< "i"] :\\% [< "x"] :\\ E (BV 1 :@ BVT 0 :% BV 0))
(Pi_ One "eq"
(Pi_ One "x" (FT "A")
(PiY One "eq"
(PiY One "x" (FT "A")
(Eq0 (E $ F "P" :@ BVT 0)
(E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)))
(Eq0 (Pi_ Any "x" (FT "A") $ E $ F "P" :@ BVT 0) (FT "p") (FT "q"))),
(Eq0 (PiY Any "x" (FT "A") $ E $ F "P" :@ BVT 0) (FT "p") (FT "q"))),
todo "absurd (when coerce is in)"
-- absurd : (`true ≡ `false : {true, false}) ⇾ (0·A : ★₀) → A ≔
-- λ e ⇒