first
This commit is contained in:
commit
cb58d03b28
11 changed files with 2329 additions and 0 deletions
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
||||||
|
dist-newstyle
|
5
CHANGELOG.md
Normal file
5
CHANGELOG.md
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
# Revision history for patuni
|
||||||
|
|
||||||
|
## 1.0 -- 2024-06-23
|
||||||
|
|
||||||
|
* Updated for GHC 9.2–9.10
|
195
Check.lhs
Normal file
195
Check.lhs
Normal file
|
@ -0,0 +1,195 @@
|
||||||
|
This module defines a typechecker and definitional equality test for a
|
||||||
|
simple Set-in-Set type theory.
|
||||||
|
|
||||||
|
> module Check where
|
||||||
|
|
||||||
|
> import Prelude hiding (any)
|
||||||
|
|
||||||
|
> import Control.Monad
|
||||||
|
> import Control.Monad.Except
|
||||||
|
> import Control.Monad.Reader
|
||||||
|
> import Data.Foldable (any)
|
||||||
|
|
||||||
|
> import Unbound.Generics.LocallyNameless
|
||||||
|
> import GHC.Generics
|
||||||
|
|
||||||
|
> import Kit
|
||||||
|
> import Tm
|
||||||
|
> import Context
|
||||||
|
|
||||||
|
|
||||||
|
> data Tel where
|
||||||
|
> Stop :: Tel
|
||||||
|
> Ask :: Type -> Bind Nom Tel -> Tel
|
||||||
|
> deriving (Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> askTel :: String -> Type -> Tel -> Tel
|
||||||
|
> askTel x _S _T = Ask _S (bind (s2n x) _T)
|
||||||
|
|
||||||
|
> supply :: Fresh m => Bind Nom Tel -> VAL -> m Tel
|
||||||
|
> supply _T v = do (x, tel) <- unbind _T
|
||||||
|
> return $ subst x v tel
|
||||||
|
|
||||||
|
|
||||||
|
> canTy :: (Can, [VAL]) -> Can -> Contextual Tel
|
||||||
|
> canTy (Set, []) Set = return Stop
|
||||||
|
> canTy (Set, []) c | c `elem` [Pi, Sig] = return $ askTel "S" SET $
|
||||||
|
> askTel "T" (mv "S" --> SET) Stop
|
||||||
|
> canTy (Sig, [_S, _T]) Pair = return $ askTel "s" _S $ askTel "t" (_T $$ mv "s") Stop
|
||||||
|
> canTy (c, as) v = fail $ "canTy: canonical type " ++ pp (C c as) ++
|
||||||
|
> " does not accept " ++ pp v
|
||||||
|
|
||||||
|
|
||||||
|
> typecheck :: Type -> VAL -> Contextual Bool
|
||||||
|
> typecheck _T t = (check _T t >> return True) `catchError`
|
||||||
|
> (\ _ -> return False)
|
||||||
|
|
||||||
|
> check :: Type -> VAL -> Contextual ()
|
||||||
|
> check (C c as) (C v bs) = do
|
||||||
|
> tel <- canTy (c, as) v
|
||||||
|
> checkTel tel bs
|
||||||
|
|
||||||
|
> check (PI _S _T) (L b) = do
|
||||||
|
> (x, t) <- unbind b
|
||||||
|
> inScope x (P _S) $ check (_T $$ var x) t
|
||||||
|
|
||||||
|
> check _T (N u as) = do
|
||||||
|
> _U <- infer u
|
||||||
|
> _T' <- checkSpine _U (N u []) as
|
||||||
|
> eq <- _T <-> _T'
|
||||||
|
> unless eq $ fail $ "Inferred type " ++ pp _T' ++
|
||||||
|
> " of " ++ pp (N u as) ++
|
||||||
|
> " is not " ++ pp _T
|
||||||
|
|
||||||
|
> check _T (C c as) = fail $ "check: canonical inhabitant " ++ pp (C c as) ++
|
||||||
|
> " of non-canonical type " ++ pp _T
|
||||||
|
|
||||||
|
> check _T (L _) = fail $ "check: lambda cannot inhabit " ++ pp _T
|
||||||
|
|
||||||
|
> infer :: Head -> Contextual Type
|
||||||
|
> infer (Var x w) = lookupVar x w
|
||||||
|
> infer (Meta x) = lookupMeta x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> checkTel :: Tel -> [VAL] -> Contextual ()
|
||||||
|
> checkTel Stop [] = return ()
|
||||||
|
> checkTel (Ask _S _T) (s:ss) = do check _S s
|
||||||
|
> tel' <- supply _T s
|
||||||
|
> checkTel tel' ss
|
||||||
|
> checkTel Stop (_:_) = fail "Overapplied canonical constructor"
|
||||||
|
> checkTel (Ask _ _) [] = fail "Underapplied canonical constructor"
|
||||||
|
|
||||||
|
|
||||||
|
> checkSpine :: Type -> VAL -> [Elim] -> Contextual Type
|
||||||
|
> checkSpine _T _ [] = return _T
|
||||||
|
> checkSpine (PI _S _T) u (A s:ts) = check _S s >>
|
||||||
|
> checkSpine (_T $$ s) (u $$ s) ts
|
||||||
|
> checkSpine (SIG _S _T) u (Hd:ts) = checkSpine _S (u %% Hd) ts
|
||||||
|
> checkSpine (SIG _S _T) u (Tl:ts) = checkSpine (_T $$ (u %% Hd)) (u %% Tl) ts
|
||||||
|
> checkSpine ty _ (s:_) = fail $ "checkSpine: type " ++ pp ty
|
||||||
|
> ++ " does not permit " ++ pp s
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> quote :: Type -> VAL -> Contextual VAL
|
||||||
|
> quote (PI _S _T) f = do
|
||||||
|
> x <- fresh (s2n "xq")
|
||||||
|
> lam x <$> inScope x (P _S)
|
||||||
|
> (quote (_T $$ var x) (f $$ var x))
|
||||||
|
|
||||||
|
> quote (SIG _S _T) v = PAIR <$> quote _S (v %% Hd) <*>
|
||||||
|
> quote (_T $$ (v %% Hd)) (v %% Tl)
|
||||||
|
|
||||||
|
> quote (C c as) (C v bs) = do tel <- canTy (c, as) v
|
||||||
|
> bs' <- quoteTel tel bs
|
||||||
|
> return $ C v bs'
|
||||||
|
|
||||||
|
> quote _T (N h as) = do _S <- infer h
|
||||||
|
> quoteSpine _S (N h []) as
|
||||||
|
|
||||||
|
> quote _T t = error $ "quote: type " ++ pp _T ++
|
||||||
|
> " does not accept " ++ pp t
|
||||||
|
|
||||||
|
|
||||||
|
> quoteTel :: Tel -> [VAL] -> Contextual [VAL]
|
||||||
|
> quoteTel Stop [] = return []
|
||||||
|
> quoteTel (Ask _S _T) (s:ss) = do s' <- quote _S s
|
||||||
|
> tel <- supply _T s
|
||||||
|
> ss' <- quoteTel tel ss
|
||||||
|
> return $ s':ss'
|
||||||
|
> quoteTel _ _ = error "quoteTel: arity error"
|
||||||
|
|
||||||
|
|
||||||
|
> quoteSpine :: Type -> VAL -> [Elim] -> Contextual VAL
|
||||||
|
> quoteSpine _T u [] = return u
|
||||||
|
> quoteSpine (PI _S _T) u (A s:as) = do
|
||||||
|
> s' <- quote _S s
|
||||||
|
> quoteSpine (_T $$ s') (u $$ s') as
|
||||||
|
> quoteSpine (SIG _S _T) u (Hd:as) = quoteSpine _S (u %% Hd) as
|
||||||
|
> quoteSpine (SIG _S _T) u (Tl:as) = quoteSpine (_T $$ (u %% Hd)) (u %% Tl) as
|
||||||
|
> quoteSpine _T u (s:_) = error $ "quoteSpine: type " ++ pp _T ++
|
||||||
|
> " of " ++ pp u ++
|
||||||
|
> " does not permit " ++ pp s
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> equal :: Type -> VAL -> VAL -> Contextual Bool
|
||||||
|
> equal _T s t = do
|
||||||
|
> s' <- quote _T s
|
||||||
|
> t' <- quote _T t
|
||||||
|
> return $ s' == t'
|
||||||
|
|
||||||
|
> (<->) :: Type -> Type -> Contextual Bool
|
||||||
|
> _S <-> _T = equal SET _S _T
|
||||||
|
|
||||||
|
> isReflexive :: Equation -> Contextual Bool
|
||||||
|
> isReflexive (EQN _S s _T t) =do
|
||||||
|
> eq <- equal SET _S _T
|
||||||
|
> if eq then equal _S s t
|
||||||
|
> else return False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> checkProb :: ProblemState -> Problem -> Contextual ()
|
||||||
|
> checkProb st p@(Unify (EQN _S s _T t)) = do
|
||||||
|
> check SET _S
|
||||||
|
> check _S s
|
||||||
|
> check SET _T
|
||||||
|
> check _T t
|
||||||
|
> when (st == Solved) $ do
|
||||||
|
> eq <- isReflexive (EQN _S s _T t)
|
||||||
|
> unless eq $ error $ "checkProb: not unified " ++ pp p
|
||||||
|
> checkProb st (All (P _T) b) = do
|
||||||
|
> check SET _T
|
||||||
|
> (x, p) <- unbind b
|
||||||
|
> inScope x (P _T) $ checkProb st p
|
||||||
|
> checkProb st (All (Twins _S _T) b) = do
|
||||||
|
> check SET _S
|
||||||
|
> check SET _T
|
||||||
|
> (x, p) <- unbind b
|
||||||
|
> inScope x (Twins _S _T) $ checkProb st p
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> validate :: (ProblemState -> Bool) -> Contextual ()
|
||||||
|
> validate q = local (const []) $ do
|
||||||
|
> _Del' <- getR
|
||||||
|
> unless (null _Del') $ error "validate: not at far right"
|
||||||
|
> _Del <- getL
|
||||||
|
> help _Del `catchError` (error . (++ ("\nwhen validating\n" ++ pp (_Del, _Del'))))
|
||||||
|
> putL _Del
|
||||||
|
> where
|
||||||
|
> help :: ContextL -> Contextual ()
|
||||||
|
> help B0 = return ()
|
||||||
|
> help (_Del :< E x _ _) | any (x `occursIn`) _Del = throwError "validate: dependency error"
|
||||||
|
> help (_Del :< E _ _T HOLE) = do putL _Del
|
||||||
|
> check SET _T
|
||||||
|
> help _Del
|
||||||
|
> help (_Del :< E _ _T (DEFN v)) = do putL _Del
|
||||||
|
> check SET _T
|
||||||
|
> check _T v
|
||||||
|
> help _Del
|
||||||
|
> help (_Del :< Prob _ p st) = do checkProb st p
|
||||||
|
> unless (q st) $ throwError "validate: bad state"
|
||||||
|
> help _Del
|
266
Context.lhs
Normal file
266
Context.lhs
Normal file
|
@ -0,0 +1,266 @@
|
||||||
|
This module defines unification problems, metacontexts and operations
|
||||||
|
for working on them in the |Contextual| monad.
|
||||||
|
|
||||||
|
> module Context where
|
||||||
|
|
||||||
|
> import Control.Applicative
|
||||||
|
> import Control.Monad.Identity
|
||||||
|
> import Control.Monad.Except
|
||||||
|
> import Control.Monad.Reader
|
||||||
|
> import Control.Monad.State
|
||||||
|
> import Data.Bifunctor
|
||||||
|
|
||||||
|
> import Debug.Trace
|
||||||
|
|
||||||
|
> import Unbound.Generics.LocallyNameless
|
||||||
|
> import Unbound.Generics.LocallyNameless.Bind (Bind(..))
|
||||||
|
> import Unbound.Generics.LocallyNameless.Unsafe (unsafeUnbind)
|
||||||
|
> import GHC.Generics
|
||||||
|
|
||||||
|
> import qualified Data.Set as Set
|
||||||
|
|
||||||
|
> import Kit
|
||||||
|
> import Tm
|
||||||
|
|
||||||
|
|
||||||
|
> data Dec = HOLE | DEFN VAL
|
||||||
|
> deriving (Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> instance Occurs Dec where
|
||||||
|
> occurrence _ HOLE = Nothing
|
||||||
|
> occurrence xs (DEFN t) = occurrence xs t
|
||||||
|
> frees _ HOLE = Set.empty
|
||||||
|
> frees isMeta (DEFN t) = frees isMeta t
|
||||||
|
|
||||||
|
> data Equation = EQN Type VAL Type VAL
|
||||||
|
> deriving (Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> instance Occurs Equation where
|
||||||
|
> occurrence xs (EQN _S s _T t) = occurrence xs [_S, s, _T, t]
|
||||||
|
> frees isMeta (EQN _S s _T t) = frees isMeta [_S, s, _T, t]
|
||||||
|
|
||||||
|
> instance Pretty Equation where
|
||||||
|
> pretty (EQN _S s _T t) =
|
||||||
|
> f <$> pretty _S <*> pretty s <*> pretty _T <*> pretty t
|
||||||
|
> where f _S' s' _T' t' = parens (s' <+> colon <+> _S') <+>
|
||||||
|
> text "==" <+> parens (t' <+> colon <+> _T')
|
||||||
|
|
||||||
|
> data Problem = Unify Equation
|
||||||
|
> | All Param (Bind Nom Problem)
|
||||||
|
> deriving (Show, Generic, Alpha)
|
||||||
|
|
||||||
|
> instance Occurs Problem where
|
||||||
|
> occurrence xs (Unify q) = occurrence xs q
|
||||||
|
> occurrence xs (All e (B _ p)) = max (occurrence xs e) (occurrence xs p)
|
||||||
|
> frees isMeta (Unify q) = frees isMeta q
|
||||||
|
> frees isMeta (All e (B _ p)) = frees isMeta e `Set.union` frees isMeta p
|
||||||
|
|
||||||
|
> instance Subst VAL Problem where
|
||||||
|
> substs s (Unify q) = Unify (substs s q)
|
||||||
|
> substs s (All e b) = All (substs s e) (bind x (substs s p))
|
||||||
|
> where (x, p) = unsafeUnbind b
|
||||||
|
|
||||||
|
> instance Pretty Problem where
|
||||||
|
> pretty (Unify q) = pretty q
|
||||||
|
> pretty (All e b) = lunbind b $ \ (x, p) -> do
|
||||||
|
> e' <- pretty e
|
||||||
|
> x' <- pretty x
|
||||||
|
> p' <- pretty p
|
||||||
|
> return $ parens (x' <+> colon <+> e') <+> text "->" <+> p'
|
||||||
|
|
||||||
|
|
||||||
|
> allProb :: Nom -> Type -> Problem -> Problem
|
||||||
|
> allProb x _T p = All (P _T) (bind x p)
|
||||||
|
|
||||||
|
> allTwinsProb :: Nom -> Type -> Type -> Problem -> Problem
|
||||||
|
> allTwinsProb x _S _T p = All (Twins _S _T) (bind x p)
|
||||||
|
|
||||||
|
> wrapProb :: [(Nom, Param)] -> Problem -> Problem
|
||||||
|
> wrapProb [] p = p
|
||||||
|
> wrapProb ((x, e) : _Gam) p = All e (bind x (wrapProb _Gam p))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> newtype ProbId = ProbId Nom
|
||||||
|
> deriving stock (Eq, Show, Generic)
|
||||||
|
> deriving newtype (Pretty)
|
||||||
|
> deriving anyclass (Alpha, Subst VAL)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> data ProblemState = Blocked | Active | Pending [ProbId] | Solved | Failed Err
|
||||||
|
> deriving (Eq, Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> instance Pretty ProblemState where
|
||||||
|
> pretty Blocked = return $ text "BLOCKED"
|
||||||
|
> pretty Active = return $ text "ACTIVE"
|
||||||
|
> pretty (Pending xs) = return $ text $ "PENDING " ++ show xs
|
||||||
|
> pretty Solved = return $ text "SOLVED"
|
||||||
|
> pretty (Failed e) = return $ text $ "FAILED: " ++ e
|
||||||
|
|
||||||
|
|
||||||
|
> data Entry = E Nom Type Dec
|
||||||
|
> | Prob ProbId Problem ProblemState
|
||||||
|
> deriving (Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> instance Occurs Entry where
|
||||||
|
> occurrence xs (E _ _T d) = occurrence xs _T `max` occurrence xs d
|
||||||
|
> occurrence xs (Prob _ p _) = occurrence xs p
|
||||||
|
> frees isMeta (E _ _T d) = frees isMeta _T `Set.union` frees isMeta d
|
||||||
|
> frees isMeta (Prob _ p _) = frees isMeta p
|
||||||
|
|
||||||
|
> instance Pretty Entry where
|
||||||
|
> pretty (E x _T HOLE) = between (text "? :") <$> pretty x <*> pretty _T
|
||||||
|
> pretty (E x _T (DEFN d)) =
|
||||||
|
> (\d' -> between (text ":=" <+> d' <+> text ":")) <$>
|
||||||
|
> prettyAt PiSize d <*> pretty x <*> prettyAt PiSize _T
|
||||||
|
> pretty (Prob x p s) =
|
||||||
|
> between (text "<=") <$>
|
||||||
|
> (between (text "?? :") <$> pretty x <*> pretty p) <*>
|
||||||
|
> pretty s
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> type ContextL = Bwd Entry
|
||||||
|
> type ContextR = [Either Subs Entry]
|
||||||
|
> type Context = (ContextL, ContextR)
|
||||||
|
|
||||||
|
> type VarEntry = (Nom, Type)
|
||||||
|
> type HoleEntry = (Nom, Type)
|
||||||
|
|
||||||
|
> data Param = P Type | Twins Type Type
|
||||||
|
> deriving (Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> instance Occurs Param where
|
||||||
|
> occurrence xs (P _T) = occurrence xs _T
|
||||||
|
> occurrence xs (Twins _S _T) = max (occurrence xs _S) (occurrence xs _T)
|
||||||
|
> frees isMeta (P _T) = frees isMeta _T
|
||||||
|
> frees isMeta (Twins _S _T) = frees isMeta _S `Set.union` frees isMeta _T
|
||||||
|
|
||||||
|
> instance Pretty Param where
|
||||||
|
> pretty (P _T) = pretty _T
|
||||||
|
> pretty (Twins _S _T) = between (text "&") <$> pretty _S <*> pretty _T
|
||||||
|
|
||||||
|
|
||||||
|
> type Params = [(Nom, Param)]
|
||||||
|
|
||||||
|
> instance Pretty Context where
|
||||||
|
> pretty (cl, cr) = pair <$> prettyEntries (trail cl)
|
||||||
|
> <*> fmap vcat (mapM f cr)
|
||||||
|
> where
|
||||||
|
> pair cl' cr' = cl' $+$ text "*" $+$ cr'
|
||||||
|
> f (Left ns) = prettySubs ns
|
||||||
|
> f (Right e) = pretty e
|
||||||
|
|
||||||
|
> prettyEntries :: (Applicative m, LFresh m, MonadReader Size m) => [Entry] -> m Doc
|
||||||
|
> prettyEntries xs = vcat <$> mapM pretty xs
|
||||||
|
|
||||||
|
> prettySubs :: (Applicative m, LFresh m, MonadReader Size m) => Subs -> m Doc
|
||||||
|
> prettySubs ns = brackets . commaSep <$>
|
||||||
|
> forM ns (\ (x, v) -> between (text "|->") <$> pretty x <*> pretty v)
|
||||||
|
|
||||||
|
> prettyDeps :: (Applicative m, LFresh m, MonadReader Size m) => [(Nom, Type)] -> m Doc
|
||||||
|
> prettyDeps ns = brackets . commaSep <$>
|
||||||
|
> forM ns (\ (x, _T) -> between (text ":") <$> pretty x <*> pretty _T)
|
||||||
|
|
||||||
|
> prettyDefns :: (Applicative m, LFresh m, MonadReader Size m) => [(Nom, Type, VAL)] -> m Doc
|
||||||
|
> prettyDefns ns = brackets . commaSep <$>
|
||||||
|
> forM ns (\ (x, _T, v) -> f <$> pretty x <*> pretty _T <*> pretty v)
|
||||||
|
> where f x' _T' v' = x' <+> text ":=" <+> v' <+> text ":" <+> _T'
|
||||||
|
|
||||||
|
> prettyParams :: (Applicative m, LFresh m, MonadReader Size m) => Params -> m Doc
|
||||||
|
> prettyParams xs = vcat <$>
|
||||||
|
> forM xs (\ (x, p) -> between colon <$> pretty x <*> pretty p)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> type Err = String
|
||||||
|
|
||||||
|
> newtype Contextual a = Contextual { unContextual ::
|
||||||
|
> ReaderT Params (StateT Context (FreshMT (ExceptT Err Identity))) a }
|
||||||
|
> deriving newtype (Functor, Applicative, Monad,
|
||||||
|
> Fresh, MonadError Err,
|
||||||
|
> MonadState Context, MonadReader Params,
|
||||||
|
> MonadPlus, Alternative)
|
||||||
|
|
||||||
|
> instance MonadFail Contextual where fail = throwError
|
||||||
|
|
||||||
|
> ctrace :: String -> Contextual ()
|
||||||
|
> ctrace s = do
|
||||||
|
> cx <- get
|
||||||
|
> _Gam <- ask
|
||||||
|
> trace (s ++ "\n" ++ pp cx ++ "\n---\n" ++ ppWith prettyParams _Gam)
|
||||||
|
> (return ()) >>= \ () -> return ()
|
||||||
|
|
||||||
|
> runContextual :: Context -> Contextual a -> Either Err (a, Context)
|
||||||
|
> runContextual cx = runIdentity . runExceptT . runFreshMT . flip runStateT cx . flip runReaderT [] . unContextual
|
||||||
|
|
||||||
|
> modifyL :: (ContextL -> ContextL) -> Contextual ()
|
||||||
|
> modifyL f = modify $ first f
|
||||||
|
|
||||||
|
> modifyR :: (ContextR -> ContextR) -> Contextual ()
|
||||||
|
> modifyR f = modify $ second f
|
||||||
|
|
||||||
|
> pushL :: Entry -> Contextual ()
|
||||||
|
> pushL e = modifyL (:< e)
|
||||||
|
|
||||||
|
> pushR :: Either Subs Entry -> Contextual ()
|
||||||
|
> pushR (Left s) = pushSubs s
|
||||||
|
> pushR (Right e) = modifyR (Right e :)
|
||||||
|
|
||||||
|
> pushSubs :: Subs -> Contextual ()
|
||||||
|
> pushSubs [] = return ()
|
||||||
|
> pushSubs n = modifyR (\ cr -> if null cr then [] else Left n : cr)
|
||||||
|
|
||||||
|
> popL :: Contextual Entry
|
||||||
|
> popL = do
|
||||||
|
> cx <- getL
|
||||||
|
> case cx of
|
||||||
|
> (cx' :< e) -> putL cx' >> return e
|
||||||
|
> B0 -> error "popL ran out of context"
|
||||||
|
|
||||||
|
> popR :: Contextual (Maybe (Either Subs Entry))
|
||||||
|
> popR = do
|
||||||
|
> cx <- getR
|
||||||
|
> case cx of
|
||||||
|
> (x : cx') -> putR cx' >> return (Just x)
|
||||||
|
> [] -> return Nothing
|
||||||
|
|
||||||
|
> getL :: MonadState Context m => m ContextL
|
||||||
|
> getL = gets fst
|
||||||
|
|
||||||
|
> getR :: Contextual ContextR
|
||||||
|
> getR = gets snd
|
||||||
|
|
||||||
|
> putL :: ContextL -> Contextual ()
|
||||||
|
> putL x = modifyL (const x)
|
||||||
|
|
||||||
|
> putR :: ContextR -> Contextual ()
|
||||||
|
> putR x = modifyR (const x)
|
||||||
|
|
||||||
|
|
||||||
|
> inScope :: MonadReader Params m => Nom -> Param -> m a -> m a
|
||||||
|
> inScope x p = local (++ [(x, p)])
|
||||||
|
|
||||||
|
> localParams :: (Params -> Params) -> Contextual a -> Contextual a
|
||||||
|
> localParams = local
|
||||||
|
|
||||||
|
> lookupVar :: (MonadReader Params m, MonadFail m) => Nom -> Twin -> m Type
|
||||||
|
> lookupVar x w = look =<< ask
|
||||||
|
> where
|
||||||
|
> look [] = fail $ "lookupVar: missing " ++ show x
|
||||||
|
> look ((y, e) : _) | x == y = case (e, w) of
|
||||||
|
> (P _T, Only) -> return _T
|
||||||
|
> (Twins _S _T, TwinL) -> return _S
|
||||||
|
> (Twins _S _T, TwinR) -> return _T
|
||||||
|
> _ -> fail "lookupVar: evil twin"
|
||||||
|
> look (_ : _Gam) = look _Gam
|
||||||
|
|
||||||
|
> lookupMeta :: (MonadState Context m, MonadFail m) => Nom -> m Type
|
||||||
|
> lookupMeta x = look =<< getL
|
||||||
|
> where
|
||||||
|
> look :: MonadFail m => ContextL -> m Type
|
||||||
|
> look B0 = fail $ "lookupMeta: missing " ++ show x
|
||||||
|
> look (cx :< E y t _) | x == y = return t
|
||||||
|
> | otherwise = look cx
|
||||||
|
> look (cx :< Prob {}) = look cx
|
91
Kit.lhs
Normal file
91
Kit.lhs
Normal file
|
@ -0,0 +1,91 @@
|
||||||
|
This module defines some basic general purpose kit, in particular
|
||||||
|
backwards lists and a typeclass of things that can be pretty-printed.
|
||||||
|
|
||||||
|
> module Kit ( bool
|
||||||
|
> , Bwd(..)
|
||||||
|
> , (<><)
|
||||||
|
> , (<>>)
|
||||||
|
> , trail
|
||||||
|
> , Size(..)
|
||||||
|
> , prettyAt
|
||||||
|
> , prettyLow
|
||||||
|
> , prettyHigh
|
||||||
|
> , wrapDoc
|
||||||
|
> , runPretty
|
||||||
|
> , pp
|
||||||
|
> , ppWith
|
||||||
|
> , Pretty(..)
|
||||||
|
> , between
|
||||||
|
> , commaSep
|
||||||
|
> , module PP
|
||||||
|
> ) where
|
||||||
|
|
||||||
|
> import Control.Monad.Reader
|
||||||
|
|
||||||
|
> import Text.PrettyPrint.HughesPJ as PP hiding (($$), first)
|
||||||
|
> import Unbound.Generics.LocallyNameless
|
||||||
|
|
||||||
|
> bool :: a -> a -> Bool -> a
|
||||||
|
> bool no yes b = if b then yes else no
|
||||||
|
|
||||||
|
|
||||||
|
> data Bwd a = B0 | Bwd a :< a
|
||||||
|
> deriving (Eq, Show, Functor, Foldable)
|
||||||
|
|
||||||
|
> (<><) :: Bwd a -> [a] -> Bwd a
|
||||||
|
> xs <>< [] = xs
|
||||||
|
> xs <>< (y : ys) = (xs :< y) <>< ys
|
||||||
|
|
||||||
|
> (<>>) :: Bwd a -> [a] -> [a]
|
||||||
|
> B0 <>> ys = ys
|
||||||
|
> (xs :< x) <>> ys = xs <>> (x : ys)
|
||||||
|
|
||||||
|
> trail :: Bwd a -> [a]
|
||||||
|
> trail = (<>> [])
|
||||||
|
|
||||||
|
|
||||||
|
> data Size = ArgSize | AppSize | PiSize | LamSize
|
||||||
|
> deriving (Bounded, Enum, Eq, Ord, Show)
|
||||||
|
|
||||||
|
> prettyAt ::
|
||||||
|
> (Pretty a, Applicative m, LFresh m, MonadReader Size m) => Size -> a -> m Doc
|
||||||
|
> prettyAt sz = local (const sz) . pretty
|
||||||
|
|
||||||
|
> prettyLow, prettyHigh ::
|
||||||
|
> (Pretty a, Applicative m, LFresh m, MonadReader Size m) => a -> m Doc
|
||||||
|
> prettyLow = prettyAt minBound
|
||||||
|
> prettyHigh = prettyAt maxBound
|
||||||
|
|
||||||
|
> wrapDoc :: MonadReader Size m => Size -> m Doc -> m Doc
|
||||||
|
> wrapDoc dSize md = do
|
||||||
|
> d <- md
|
||||||
|
> curSize <- ask
|
||||||
|
> return $ if dSize > curSize then parens d else d
|
||||||
|
|
||||||
|
> runPretty :: ReaderT Size LFreshM a -> a
|
||||||
|
> runPretty = runLFreshM . flip runReaderT maxBound
|
||||||
|
|
||||||
|
> pp :: Pretty a => a -> String
|
||||||
|
> pp = render . runPretty . pretty
|
||||||
|
|
||||||
|
> ppWith :: (a -> ReaderT Size LFreshM Doc) -> a -> String
|
||||||
|
> ppWith f = render . runPretty . f
|
||||||
|
|
||||||
|
> class Pretty a where
|
||||||
|
> pretty :: (Applicative m, LFresh m, MonadReader Size m) => a -> m Doc
|
||||||
|
|
||||||
|
> instance Pretty (Name x) where
|
||||||
|
> pretty n = return $ text $ show n
|
||||||
|
|
||||||
|
> instance (Pretty a, Pretty b) => Pretty (Either a b) where
|
||||||
|
> pretty (Left x) = (text "Left" <+>) <$> pretty x
|
||||||
|
> pretty (Right y) = (text "Right" <+>) <$> pretty y
|
||||||
|
|
||||||
|
> instance Pretty () where
|
||||||
|
> pretty () = return $ text "()"
|
||||||
|
|
||||||
|
> between :: Doc -> Doc -> Doc -> Doc
|
||||||
|
> between d x y = x <+> d <+> y
|
||||||
|
|
||||||
|
> commaSep :: [Doc] -> Doc
|
||||||
|
> commaSep = hsep . punctuate comma
|
30
LICENSE
Normal file
30
LICENSE
Normal file
|
@ -0,0 +1,30 @@
|
||||||
|
Copyright (c) 2013, Adam Gundry & Conor McBride
|
||||||
|
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above
|
||||||
|
copyright notice, this list of conditions and the following
|
||||||
|
disclaimer in the documentation and/or other materials provided
|
||||||
|
with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Adam Gundry nor the names of other
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
11
README.txt
Normal file
11
README.txt
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
This is the source code accompanying
|
||||||
|
|
||||||
|
A tutorial implementation of dynamic pattern unification
|
||||||
|
by Adam Gundry and Conor McBride
|
||||||
|
|
||||||
|
10th July 2012
|
||||||
|
|
||||||
|
|
||||||
|
The algorithm presented in the paper is in the file Unify.lhs. Look at
|
||||||
|
the file Test.lhs to see how to invoke it (via GHCi). Note that a
|
||||||
|
recent version of GHC is required, with the unbound-generics library.
|
716
Test.lhs
Normal file
716
Test.lhs
Normal file
|
@ -0,0 +1,716 @@
|
||||||
|
This module defines test cases for the unification algorithm, divided
|
||||||
|
into those which must succeed, those which should block (possibly
|
||||||
|
succeeding partially), and those which must fail.
|
||||||
|
|
||||||
|
> module Test where
|
||||||
|
|
||||||
|
> import Unbound.Generics.LocallyNameless
|
||||||
|
|
||||||
|
> import Kit
|
||||||
|
> import Tm
|
||||||
|
> import Unify
|
||||||
|
> import Context
|
||||||
|
> import Check
|
||||||
|
|
||||||
|
|
||||||
|
The |test| function executes the constraint solving algorithm on the
|
||||||
|
given metacontext.
|
||||||
|
|
||||||
|
> test :: [Entry] -> IO ()
|
||||||
|
> test = runTest (const True)
|
||||||
|
|
||||||
|
|
||||||
|
Allocate a fresh name so the counter starts from 1, to avoid clashing
|
||||||
|
with s2n (which generates names with index 0):
|
||||||
|
|
||||||
|
> initialise :: Contextual ()
|
||||||
|
> initialise = (fresh (s2n "init") :: Contextual (Name VAL)) >> return ()
|
||||||
|
|
||||||
|
> runTest :: (ProblemState -> Bool) -> [Entry] -> IO ()
|
||||||
|
> runTest q es = do putStrLn $ "Initial context:\n" ++
|
||||||
|
> render (runPretty (prettyEntries es))
|
||||||
|
> let r = runContextual (B0, map Right es)
|
||||||
|
> (initialise >> ambulando [] [] >> validate q)
|
||||||
|
> case r of
|
||||||
|
> Left err -> putStrLn $ "Error: " ++ err
|
||||||
|
> Right ((), cx) -> putStrLn $ "Final context:\n" ++ pp cx ++ "\n"
|
||||||
|
|
||||||
|
> runTestSolved, runTestStuck, runTestFailed :: IO ()
|
||||||
|
> runTestSolved = mapM_ (runTest (== Solved)) tests
|
||||||
|
> runTestStuck = mapM_ (runTest (not . isFailed)) stucks
|
||||||
|
> runTestFailed = mapM_ (runTest isFailed) fails
|
||||||
|
|
||||||
|
> isFailed :: ProblemState -> Bool
|
||||||
|
> isFailed (Failed _) = True
|
||||||
|
> isFailed _ = False
|
||||||
|
|
||||||
|
> lifted :: Nom -> Type -> [Entry] -> [Entry]
|
||||||
|
> lifted x _T es = lift [] es
|
||||||
|
> where
|
||||||
|
> lift :: Subs -> [Entry] -> [Entry]
|
||||||
|
> lift g (E a _A d : as) = E a (_Pi x _T (substs g _A)) d :
|
||||||
|
> lift ((a, meta a $$ var x) : g) as
|
||||||
|
> lift g (Prob a p s : as) = Prob a (allProb x _T (substs g p)) s : lift g as
|
||||||
|
> lift _ [] = []
|
||||||
|
|
||||||
|
> boy :: String -> Type -> [Entry] -> [Entry]
|
||||||
|
> boy = lifted . s2n
|
||||||
|
|
||||||
|
> gal :: String -> Type -> Entry
|
||||||
|
> gal x _T = E (s2n x) _T HOLE
|
||||||
|
|
||||||
|
> eq :: String -> Type -> VAL -> Type -> VAL -> Entry
|
||||||
|
> eq x _S s _T t = Prob (ProbId (s2n x)) (Unify (EQN _S s _T t)) Active
|
||||||
|
|
||||||
|
> tests, stucks, fails :: [[Entry]]
|
||||||
|
> tests = [
|
||||||
|
|
||||||
|
> -- test 0: solve B with A
|
||||||
|
> ( gal "A" SET
|
||||||
|
> : gal "B" SET
|
||||||
|
> : eq "p" SET (mv "A") SET (mv "B")
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 1: solve B with \ _ . A
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" (mv "A" --> SET)
|
||||||
|
> : boy "x" (mv "A")
|
||||||
|
> ( eq "p" SET (mv "A") SET (mv "B" $$ vv "x")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 2: restrict B to second argument
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : boy "x" (mv "A")
|
||||||
|
> ( boy "y" (mv "A")
|
||||||
|
> ( gal "B" (mv "A" --> mv "A" --> SET)
|
||||||
|
> : eq "p" SET (mv "B" $$$ [vv "y", vv "x"])
|
||||||
|
> SET (mv "B" $$$ [vv "x", vv "x"])
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 3: X unchanged
|
||||||
|
> , [ gal "X" (_PI "A" SET (vv "A" --> SET))
|
||||||
|
> , eq "p" SET (mv "X" $$$ [SET, SET])
|
||||||
|
> SET (mv "X" $$$ [SET, SET])
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 4: solve A with SET
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , eq "p" SET (mv "A") SET SET
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 5: solve A with B -> B
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , gal "B" SET
|
||||||
|
> , gal "C" SET
|
||||||
|
> , eq "p" SET (mv "A") SET (mv "B" --> mv "B")
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 6: solve A with \ X . B -> X
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : gal "B" SET
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" SET (mv "A" $$ vv "X") SET (mv "B" --> vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 7: solve A with \ _ X _ . B X -> X
|
||||||
|
> , ( gal "A" (SET --> SET --> SET --> SET)
|
||||||
|
> : gal "B" (SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> (eq "p" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
|
||||||
|
> SET (mv "B" $$ vv "X" --> vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 8: solve S with A and T with B
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , gal "S" SET
|
||||||
|
> , gal "B" (mv "A" --> SET)
|
||||||
|
> , gal "T" (mv "S" --> SET)
|
||||||
|
> , eq "p" SET (PI (mv "A") (mv "B"))
|
||||||
|
> SET (PI (mv "S") (mv "T"))
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 9: solve M with \ y . y
|
||||||
|
> , [ gal "M" (SET --> SET)
|
||||||
|
> , eq "p" (SET --> SET) (ll "y" (vv "y"))
|
||||||
|
> (SET --> SET) (ll "y" (mv "M" $$ vv "y"))
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 10: solve A with \ _ X _ . X -> X and B with \ X _ _ . X
|
||||||
|
> , ( gal "A" (SET --> SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( gal "B" (SET --> SET)
|
||||||
|
> : eq "q" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
|
||||||
|
> SET (mv "B" $$ vv "Y" --> vv "X")
|
||||||
|
> : eq "p" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
|
||||||
|
> SET (vv "X" --> vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 11: solve A with \ _ y . y
|
||||||
|
> , [ gal "A" (_PI "X" SET (vv "X" --> vv "X"))
|
||||||
|
> , eq "p" (_PI "X" SET (vv "X" --> vv "X")) (ll "X" (ll "y" (vv "y")))
|
||||||
|
> (_PI "X" SET (vv "X" --> vv "X")) (ll "X" (mv "A" $$ vv "X"))
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 12: solve f with \ _ y . y after lifting type
|
||||||
|
> , ( gal "f" (_PI "Y" SET (vv "Y" --> vv "Y"))
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" (vv "X" --> vv "X") (ll "y" (vv "y"))
|
||||||
|
> (vv "X" --> vv "X") (mv "f" $$ vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 13: intersection with nonlinearity, restrict F to first two args
|
||||||
|
> , ( gal "F" (SET --> SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" SET (mv "F" $$$ [vv "X", vv "X", vv "Y"])
|
||||||
|
> SET (mv "F" $$$ [vv "X", vv "X", vv "X"])
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 14: heterogeneous equality; solve A and B with SET
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , gal "B" SET
|
||||||
|
> , eq "p" (mv "A" --> SET) (ll "a" SET)
|
||||||
|
> (mv "B" --> SET) (ll "b" (mv "B"))
|
||||||
|
> , eq "q" SET (mv "A") SET (mv "B")
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 15: sigma metavariable; solve A with ((?, Set), ?)
|
||||||
|
> , [ gal "A" (_SIG "X" (SET *: SET) (vv "X" %% Tl))
|
||||||
|
> , eq "p" SET SET SET (mv "A" %% Hd %% Tl)
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 16: sigma variable; solve A with \ X Y . X * Y
|
||||||
|
> , ( gal "A" (SET --> SET --> SET)
|
||||||
|
> : boy "B" (_SIG "X" SET (vv "X" *: SET))
|
||||||
|
> ( eq "p" SET (mv "A" $$ (vv "B" %% Hd) $$ (vv "B" %% Tl %% Tl))
|
||||||
|
> SET ((vv "B" %% Hd) *: (vv "B" %% Tl %% Tl))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 17: sigma variable; restrict A to \ _ X . ?A' X
|
||||||
|
> , ( gal "A" (SET --> SET --> SET)
|
||||||
|
> : boy "B" (_SIG "X" SET (vv "X" *: SET))
|
||||||
|
> ( eq "p" SET (mv "A" $$$ [vv "B" %% Hd, vv "B" %% Tl %% Tl])
|
||||||
|
> SET (mv "A" $$$ [vv "B" %% Tl %% Tl, vv "B" %% Tl %% Tl])
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 18: sigma variable; solve B with \ X z . ?A X (z -)
|
||||||
|
> , ( gal "A" (SET --> SET --> SET)
|
||||||
|
> : gal "B" (_PI "X" SET (vv "X" *: SET --> SET))
|
||||||
|
> : boy "C" (_SIG "X" SET (vv "X" *: SET))
|
||||||
|
> ( eq "p" SET (mv "A" $$$ [vv "C" %% Hd, vv "C" %% Tl %% Tl])
|
||||||
|
> SET (mv "B" $$$ [vv "C" %% Hd, vv "C" %% Tl])
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 19: sigma metavariable and equation; solve A
|
||||||
|
> , [ gal "A" (_SIG "X" SET (vv "X"))
|
||||||
|
> , eq "p" (_SIG "X" SET (vv "X" *: SET))
|
||||||
|
> (PAIR (mv "A" %% Hd) (PAIR (mv "A" %% Tl) (SET --> SET)))
|
||||||
|
> (_SIG "X" SET (vv "X" *: SET))
|
||||||
|
> (PAIR (SET --> SET) (PAIR (ll "z" (vv "z")) (mv "A" %% Hd)))
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 20: solve A with X ! and a with X -
|
||||||
|
> , ( boy "X" (_SIG "Y" SET (vv "Y"))
|
||||||
|
> ( gal "A" SET
|
||||||
|
> : gal "a" (mv "A")
|
||||||
|
> : eq "p" (_SIG "Y" SET (vv "Y")) (vv "X")
|
||||||
|
> (_SIG "Y" SET (vv "Y")) (PAIR (mv "A") (mv "a"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 21: solve A with f
|
||||||
|
> , ( boy "f" (SET --> SET)
|
||||||
|
> ( gal "A" (SET --> SET)
|
||||||
|
> : eq "p" (SET --> SET) (vv "f")
|
||||||
|
> (SET --> SET) (ll "x" (mv "A" $$ vv "x"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 22: solve A with SET
|
||||||
|
> , ( boy "X" ((SET --> SET) *: SET)
|
||||||
|
> ( gal "A" SET
|
||||||
|
> : eq "p" SET (vv "X" %% Hd $$ SET) SET (vv "X" %% Hd $$ mv "A")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 23: solve SS with [S', S']
|
||||||
|
> , ( gal "SS" (SET *: SET)
|
||||||
|
> : boy "f" (SET --> SET --> SET)
|
||||||
|
> ( eq "p" SET (vv "f" $$$ [mv "SS" %% Tl, mv "SS" %% Hd])
|
||||||
|
> SET (vv "f" $$$ [mv "SS" %% Hd, mv "SS" %% Tl])
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 24: solve A with SET
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , eq "p" (mv "A" --> SET) (ll "a" (mv "A"))
|
||||||
|
> (SET --> SET) (ll "a" SET)
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 25: solve with extensionality and refl
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , eq "p" (mv "A" --> SET) (ll "x" SET)
|
||||||
|
> (SET --> SET) (ll "x" SET)
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 26: solve A with \ _ Y . Y
|
||||||
|
> , ( gal "A" (SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" (mv "A" $$ vv "X" $$ vv "X" --> SET)
|
||||||
|
> (ll "Y" (mv "A" $$ vv "X" $$ vv "Y"))
|
||||||
|
> (vv "X" --> SET)
|
||||||
|
> (ll "Y" (vv "X"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 27: solve A with SET
|
||||||
|
> , [ gal "A" SET
|
||||||
|
> , eq "p" SET (_PI "X" (SET --> SET) (vv "X" $$ mv "A"))
|
||||||
|
> SET (_PI "X" (SET --> SET) (vv "X" $$ SET))
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- test 28: prune and solve A with \ _ . B -> B
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : boy "x" (_SIG "Y" SET (vv "Y"))
|
||||||
|
> ( gal "B" SET
|
||||||
|
> : eq "p" SET (mv "A" $$ (vv "x" %% Hd))
|
||||||
|
> SET (mv "B" --> mv "B")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 29: prune A and solve B with A
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : gal "B" SET
|
||||||
|
> : eq "p" (SET --> SET) (ll "X" (mv "A" $$ (vv "X" --> vv "X")))
|
||||||
|
> (SET --> SET) (ll "X" (mv "B"))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 30: prune A and solve B with A
|
||||||
|
> , ( gal "B" SET
|
||||||
|
> : gal "A" (SET --> SET)
|
||||||
|
> : eq "p" (SET --> SET) (ll "X" (mv "A" $$ (vv "X" --> vv "X")))
|
||||||
|
> (SET --> SET) (ll "X" (mv "B"))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 31: solve A with SET and f with \ x . x
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "f" (mv "A" --> SET)
|
||||||
|
> : eq "p" (mv "A" --> SET) (mv "f")
|
||||||
|
> (mv "A" --> mv "A") (ll "x" (vv "x"))
|
||||||
|
> : eq "q" SET (mv "A" --> SET) SET (mv "A" --> mv "A")
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 32: prune B and solve A with B -> B
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" (SET --> SET)
|
||||||
|
> : eq "p" (SET --> SET) (ll "Y" (mv "A"))
|
||||||
|
> (SET --> SET) (ll "X" ((mv "B" $$ mv "A") -->
|
||||||
|
> (mv "B" $$ vv "X")))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 33: eta-contract pi
|
||||||
|
> , ( gal "A" ((SET --> SET) --> SET)
|
||||||
|
> : boy "f" (SET --> SET)
|
||||||
|
> ( eq "p" SET (mv "A" $$ (ll "y" (vv "f" $$ vv "y")))
|
||||||
|
> SET (vv "f" $$ SET)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 34: eta-contract sigma
|
||||||
|
> , ( gal "A" (SET *: SET --> SET)
|
||||||
|
> : boy "b" (SET *: SET)
|
||||||
|
> ( eq "p" SET (mv "A" $$ (PAIR (vv "b" %% Hd) (vv "b" %% Tl)))
|
||||||
|
> SET (vv "b" %% Hd)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 35: eta-contract pi and sigma
|
||||||
|
> , ( gal "A" ((SET *: SET --> SET) --> SET)
|
||||||
|
> : boy "f" (SET *: SET --> SET)
|
||||||
|
> ( eq "p" SET (mv "A" $$ (ll "b" (vv "f" $$ PAIR (vv "b" %% Hd) (vv "b" %% Tl))))
|
||||||
|
> SET (vv "f" $$ PAIR SET SET)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 36: A/P Flattening Sigma-types
|
||||||
|
> , ( gal "u" ((SET --> SET *: SET) --> SET)
|
||||||
|
> : boy "z1" (SET --> SET)
|
||||||
|
> ( boy "z2" (SET --> SET)
|
||||||
|
> ( eq "p" SET (mv "u" $$ (ll "x" (PAIR (vv "z1" $$ vv "x") (vv "z2" $$ vv "x"))))
|
||||||
|
> SET SET
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 37: A/P Eliminating projections
|
||||||
|
> , ( gal "u" ((SET --> SET) --> SET)
|
||||||
|
> : boy "y" (SET --> SET *: SET)
|
||||||
|
> ( eq "p" SET (mv "u" $$ (ll "x" (vv "y" $$ vv "x" %% Hd)))
|
||||||
|
> SET (vv "y" $$ SET %% Hd)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 38: prune A and solve B with A
|
||||||
|
> , ( gal "B" SET
|
||||||
|
> : gal "A" (SET --> SET)
|
||||||
|
> : eq "p" (SET --> SET) (ll "X" (mv "B"))
|
||||||
|
> (SET --> SET) (ll "X" (mv "A" $$ (vv "X" --> vv "X")))
|
||||||
|
>
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 39: solve u with \ _ x . x
|
||||||
|
> , ( gal "u" (_PI "v" (_SIG "S" SET (vv "S" *: (vv "S" --> SET))) ((vv "v" %% Tl %% Tl $$ (vv "v" %% Tl %% Hd)) --> (vv "v" %% Tl %% Tl $$ (vv "v" %% Tl %% Hd))))
|
||||||
|
> : boy "A" SET
|
||||||
|
> ( boy "a" (vv "A")
|
||||||
|
> ( boy "f" (vv "A" --> SET)
|
||||||
|
> ( eq "p" ((vv "f" $$ vv "a") --> (vv "f" $$ vv "a")) (mv "u" $$ PAIR (vv "A") (PAIR (vv "a") (vv "f")))
|
||||||
|
> ((vv "f" $$ vv "a") --> (vv "f" $$ vv "a")) (ll "x" (vv "x"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 40: restrict A to second argument
|
||||||
|
> , ( gal "A" (SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" (SET --> SET) (mv "A" $$ vv "X")
|
||||||
|
> (SET --> SET) (ll "Z" (mv "A" $$ vv "Y" $$ vv "Z"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 41: solve A with [ SET , SET ]
|
||||||
|
> , ( gal "A" (SET *: SET)
|
||||||
|
> : eq "p" (SET *: SET) (mv "A")
|
||||||
|
> (SET *: SET) (PAIR (mv "A" %% Tl) SET)
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 42
|
||||||
|
> , ( gal "T" (SET --> SET)
|
||||||
|
> : gal "A" (_PI "Y" SET (mv "T" $$ vv "Y" --> SET))
|
||||||
|
> : gal "B" SET
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "t" (mv "T" $$ vv "X")
|
||||||
|
> ( eq "p" SET (mv "B") SET (mv "A" $$ vv "X" $$ vv "t" --> SET)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 43
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : gal "F" (SET --> SET)
|
||||||
|
> : gal "B" SET
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" SET (mv "B")
|
||||||
|
> SET (mv "A" $$ (mv "F" $$ vv "X") --> mv "A" $$ vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 44: false occurrence
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" SET
|
||||||
|
> : gal "C" SET
|
||||||
|
> : eq "p" (mv "C" --> SET) (lamK (mv "B"))
|
||||||
|
> (mv "C" --> SET) (lamK (mv "A"))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 45
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" (mv "A" --> SET)
|
||||||
|
> : gal "C" (mv "A" --> SET)
|
||||||
|
> : boy "x" (mv "A")
|
||||||
|
> ( boy "y" (mv "A")
|
||||||
|
> ( eq "p" SET (mv "B" $$ vv "x")
|
||||||
|
> SET (mv "C" $$ vv "x")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 46: prune p to learn B doesn't depend on its argument
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : boy "Z" SET
|
||||||
|
> ( gal "B" (SET --> SET)
|
||||||
|
> : gal "C" SET
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" SET (mv "A" $$ (mv "B" $$ mv "C"))
|
||||||
|
> SET (mv "B" $$ vv "Y")
|
||||||
|
> : eq "q" SET (mv "B" $$ mv "C") SET (vv "Z")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 47
|
||||||
|
> , ( gal "A" (_PI "X" SET (vv "X" --> SET))
|
||||||
|
> : gal "B" SET
|
||||||
|
> : boy "Y" SET
|
||||||
|
> ( boy "y" (vv "Y")
|
||||||
|
> ( eq "p" SET (mv "B")
|
||||||
|
> SET (mv "A" $$ vv "Y" $$ vv "y")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 48
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : gal "B" SET
|
||||||
|
> : eq "p" SET (mv "B")
|
||||||
|
> SET (_PI "X" SET (mv "A" $$ vv "X"))
|
||||||
|
>
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 49: don't prune A too much
|
||||||
|
> , ( gal "F" (SET --> SET --> SET)
|
||||||
|
> : gal "A" (_PI "X" SET (mv "F" $$ SET $$ vv "X" --> SET))
|
||||||
|
> : gal "B" (SET --> SET)
|
||||||
|
> : boy "Y" SET
|
||||||
|
> ( eq "p" (SET --> SET) (mv "B")
|
||||||
|
> (mv "F" $$ SET $$ vv "Y" --> SET) (mv "A" $$ vv "Y")
|
||||||
|
> : boy "y" (mv "F" $$ SET $$ vv "Y")
|
||||||
|
> ( eq "q" SET (mv "F" $$ vv "Y" $$ vv "Y") SET SET
|
||||||
|
> : eq "r" SET (mv "A" $$ vv "Y" $$ vv "y")
|
||||||
|
> (mv "F" $$ SET $$ vv "Y") (vv "y")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 50: Miller's nasty non-pruning example
|
||||||
|
> , ( boy "a" SET
|
||||||
|
> ( gal "X" ((SET --> SET) --> SET --> SET)
|
||||||
|
> : boy "y" SET
|
||||||
|
> ( eq "p" SET (mv "X" $$ (ll "z" (vv "a")) $$ vv "y")
|
||||||
|
> SET (vv "a")
|
||||||
|
> : eq "q" ((SET --> SET) --> SET --> SET) (mv "X")
|
||||||
|
> ((SET --> SET) --> SET --> SET) (ll "z1" (ll "z2" (vv "z1" $$ vv "z2")))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- test 51
|
||||||
|
> , ( gal "A" (_PI "X" SET (_PI "x" (vv "X") SET))
|
||||||
|
> : gal "B" SET
|
||||||
|
> : eq "p" SET (mv "B")
|
||||||
|
> SET (_PI "X" SET (_PI "x" (vv "X") (mv "A" $$ vv "X" $$ vv "x")))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> ]
|
||||||
|
|
||||||
|
|
||||||
|
> stucks = [
|
||||||
|
|
||||||
|
> -- stuck 0: nonlinear
|
||||||
|
> ( gal "A" (SET --> SET --> SET --> SET)
|
||||||
|
> : gal "B" (SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
|
||||||
|
> SET (mv "B" $$ vv "Y" --> vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 1: nonlinear
|
||||||
|
> , ( gal "F" (SET --> SET --> SET)
|
||||||
|
> : gal "G" (SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" SET (mv "F" $$$ [vv "X", vv "X"])
|
||||||
|
> SET (mv "G" $$$ [vv "X", vv "X"])
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 2: nonlinear
|
||||||
|
> , ( boy "X" SET
|
||||||
|
> ( gal "f" (vv "X" --> vv "X" --> vv "X")
|
||||||
|
> : boy "Y" SET
|
||||||
|
> ( boy "x" (vv "X")
|
||||||
|
> ( eq "p" (vv "Y" --> vv "X") (ll "y" (mv "f" $$ vv "x" $$ vv "x"))
|
||||||
|
> (vv "Y" --> vv "X") (ll "y" (vv "x"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 3: nonlinear
|
||||||
|
> , ( gal "B" (SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( gal "A" SET
|
||||||
|
> : eq "p" (mv "A" --> SET) (ll "a" (mv "B" $$ vv "X" $$ vv "X"))
|
||||||
|
> (mv "A" --> SET) (ll "a" (vv "X"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 4: double meta
|
||||||
|
> , [ gal "A" (SET --> SET)
|
||||||
|
> , gal "B" (SET --> SET)
|
||||||
|
> , gal "D" SET
|
||||||
|
> , gal "C" SET
|
||||||
|
> , eq "p" SET (mv "A" $$ (mv "B" $$ mv "C")) SET (mv "D")
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- stuck 5: solution does not typecheck
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "f" (mv "A" --> SET)
|
||||||
|
> : eq "p" (mv "A" --> SET) (mv "f")
|
||||||
|
> (mv "A" --> mv "A") (ll "x" (vv "x"))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- stuck 6: weak rigid occurrence should not cause failure
|
||||||
|
> , ( gal "A" ((SET --> SET) --> SET)
|
||||||
|
> : boy "f" (SET --> SET)
|
||||||
|
> ( eq "p" SET (mv "A" $$ vv "f")
|
||||||
|
> SET (vv "f" $$ (mv "A" $$ (ll "X" (vv "X"))) --> SET)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 7: prune second argument of B and get stuck
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" (SET --> SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" SET (mv "A")
|
||||||
|
> SET (mv "B" $$ mv "A" $$ vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 8: prune argument of A
|
||||||
|
> , ( boy "f" (SET --> SET)
|
||||||
|
> ( gal "A" (SET --> SET)
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" SET (mv "A" $$ vv "X")
|
||||||
|
> SET (vv "f" $$ (mv "A" $$ vv "Y"))
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 9 (requires sigma-splitting of twins)
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" (SET --> mv "A" --> SET)
|
||||||
|
> : gal "S" SET
|
||||||
|
> : gal "T" (SET --> mv "S" --> SET)
|
||||||
|
> : eq "p" (SIG (mv "A") (mv "B" $$ SET) --> SET)
|
||||||
|
> (ll "x" (mv "B" $$ SET $$ (vv "x" %% Hd)))
|
||||||
|
> (SIG (mv "S") (mv "T" $$ SET) --> SET)
|
||||||
|
> (ll "x" (mv "T" $$ SET $$ (vv "x" %% Hd)))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- stuck 10: awkward occurrence (TODO: should this get stuck or fail?)
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "a" (mv "A")
|
||||||
|
> : gal "f" (mv "A" --> SET)
|
||||||
|
> : eq "p" SET (mv "A") SET ((mv "f" $$ mv "a") --> SET)
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- stuck 12: twins with matching spines (stuck on B Set == T Set)
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" (SET --> mv "A" --> SET)
|
||||||
|
> : gal "S" SET
|
||||||
|
> : gal "T" (SET --> mv "S" --> SET)
|
||||||
|
> : eq "p" (SIG (mv "A") (mv "B" $$ SET) --> mv "A")
|
||||||
|
> (ll "x" (vv "x" %% Hd))
|
||||||
|
> (SIG (mv "S") (mv "T" $$ SET) --> mv "S")
|
||||||
|
> (ll "x" (vv "x" %% Hd))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- stuck 13
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : gal "B" (SET --> SET)
|
||||||
|
> : gal "a" (mv "A" $$ SET)
|
||||||
|
> : gal "b" (mv "B" $$ SET)
|
||||||
|
> : eq "p" (SIG SET (mv "B")) (PAIR SET (mv "b"))
|
||||||
|
> (mv "A" $$ SET) (mv "a")
|
||||||
|
> : eq "q" SET (SIG SET (mv "B")) SET (mv "A" $$ SET)
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- stuck 14 (TODO: should this be solvable by pruning?)
|
||||||
|
> , ( gal "A" (SET --> SET)
|
||||||
|
> : gal "B" SET
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" SET (mv "A" $$ (mv "A" $$ vv "X"))
|
||||||
|
> SET (mv "B")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 15
|
||||||
|
> , ( gal "F" (SET --> SET)
|
||||||
|
> : gal "A" (_PI "X" SET (mv "F" $$ vv "X"))
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" (mv "F" $$ vv "X") (mv "A" $$ vv "X")
|
||||||
|
> (mv "F" $$ vv "Y") (mv "A" $$ vv "Y")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- stuck 16
|
||||||
|
> , ( gal "B" (SET --> SET)
|
||||||
|
> : gal "F" (mv "B" $$ SET --> SET)
|
||||||
|
> : eq "p" (mv "B" $$ SET --> SET) (ll "Y" (mv "F" $$ vv "Y"))
|
||||||
|
> (SET --> SET) (ll "Y" (vv "Y"))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> -- test 53: solve C with A despite B being in the way
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "C" SET
|
||||||
|
> : gal "B" (SET --> SET)
|
||||||
|
> : gal "F" (mv "B" $$ SET --> SET)
|
||||||
|
> : eq "p" (_PI "X" (mv "B" $$ SET) ((mv "F" $$ vv "X") --> SET))
|
||||||
|
> (ll "X" (ll "x" (mv "A")))
|
||||||
|
> (_PI "X" SET (vv "X" --> SET))
|
||||||
|
> (ll "X" (ll "x" (mv "C")))
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> fails = [
|
||||||
|
|
||||||
|
> -- fail 0: occur check failure (A occurs in A -> A)
|
||||||
|
> [ gal "A" SET
|
||||||
|
> , eq "p" SET (mv "A") SET (mv "A" --> mv "A")
|
||||||
|
> ]
|
||||||
|
|
||||||
|
> -- fail 1: flex-rigid fails because A cannot depend on X
|
||||||
|
> , ( gal "A" SET
|
||||||
|
> : gal "B" SET
|
||||||
|
> : boy "X" SET
|
||||||
|
> ( eq "p" SET (mv "A") SET (mv "B" --> vv "X")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- fail 2: rigid-rigid clash
|
||||||
|
> , ( boy "X" SET
|
||||||
|
> ( boy "Y" SET
|
||||||
|
> ( eq "p" SET (vv "X") SET (vv "Y")
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- fail 3: spine mismatch
|
||||||
|
> , ( boy "X" (SET *: SET)
|
||||||
|
> ( eq "p" SET (vv "X" %% Hd) SET (vv "X" %% Tl)
|
||||||
|
> : [])
|
||||||
|
> )
|
||||||
|
|
||||||
|
> -- fail 4: rigid-rigid constant clash
|
||||||
|
> , ( eq "p" SET SET SET (SET --> SET)
|
||||||
|
> : [])
|
||||||
|
|
||||||
|
> ]
|
333
Tm.lhs
Normal file
333
Tm.lhs
Normal file
|
@ -0,0 +1,333 @@
|
||||||
|
This module defines terms and machinery for working with them
|
||||||
|
(including evaluation and occurrence checking).
|
||||||
|
|
||||||
|
> module Tm where
|
||||||
|
|
||||||
|
> import Prelude hiding ((<>))
|
||||||
|
> import Data.List (unionBy)
|
||||||
|
> import Data.Function (on)
|
||||||
|
|
||||||
|
> import Unbound.Generics.LocallyNameless
|
||||||
|
> import Unbound.Generics.LocallyNameless.Bind (Bind(..))
|
||||||
|
> import Unbound.Generics.LocallyNameless.Unsafe (unsafeUnbind)
|
||||||
|
|
||||||
|
> import Data.Set (Set)
|
||||||
|
> import qualified Data.Set as Set
|
||||||
|
|
||||||
|
> import GHC.Generics
|
||||||
|
|
||||||
|
> import Kit
|
||||||
|
|
||||||
|
> type Nom = Name VAL
|
||||||
|
|
||||||
|
> freshNom :: Fresh m => m Nom
|
||||||
|
> freshNom = fresh (s2n "x")
|
||||||
|
|
||||||
|
|
||||||
|
> data VAL where
|
||||||
|
> L :: Bind Nom VAL -> VAL
|
||||||
|
> N :: Head -> [Elim] -> VAL
|
||||||
|
> C :: Can -> [VAL] -> VAL
|
||||||
|
> deriving (Show, Generic, Alpha)
|
||||||
|
|
||||||
|
> type Type = VAL
|
||||||
|
|
||||||
|
> data Can = Set | Pi | Sig | Pair
|
||||||
|
> deriving (Eq, Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> data Twin = Only | TwinL | TwinR
|
||||||
|
> deriving (Eq, Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> data Head = Var Nom Twin | Meta Nom
|
||||||
|
> deriving (Eq, Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
> data Elim = A VAL | Hd | Tl
|
||||||
|
> deriving (Eq, Show, Generic, Alpha, Subst VAL)
|
||||||
|
|
||||||
|
|
||||||
|
> pattern SET :: VAL
|
||||||
|
> pattern SET = C Set []
|
||||||
|
|
||||||
|
> pattern PI :: VAL -> VAL -> VAL
|
||||||
|
> pattern PI _S _T = C Pi [_S, _T]
|
||||||
|
|
||||||
|
> pattern SIG :: VAL -> VAL -> VAL
|
||||||
|
> pattern SIG _S _T = C Sig [_S, _T]
|
||||||
|
|
||||||
|
> pattern PAIR :: VAL -> VAL -> VAL
|
||||||
|
> pattern PAIR s t = C Pair [s, t]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> instance Eq VAL where
|
||||||
|
> (==) = aeq
|
||||||
|
|
||||||
|
> instance Subst VAL VAL where
|
||||||
|
> substs = eval
|
||||||
|
> subst n u = substs [(n, u)]
|
||||||
|
|
||||||
|
> instance Pretty VAL where
|
||||||
|
> pretty (PI _S (L b)) =
|
||||||
|
> lunbind b $ \ (x, _T) ->
|
||||||
|
> wrapDoc PiSize $
|
||||||
|
> if x `occursIn` _T
|
||||||
|
> then (\ x' _S' _T' -> text "Pi" <+> parens (x' <+> colon <+> _S') <+> _T')
|
||||||
|
> <$> prettyHigh x <*> prettyHigh _S <*> prettyAt ArgSize _T
|
||||||
|
> else between (text "->") <$> prettyAt AppSize _S <*> prettyAt PiSize _T
|
||||||
|
>
|
||||||
|
> pretty (SIG _S (L b)) =
|
||||||
|
> lunbind b $ \ (x, _T) ->
|
||||||
|
> wrapDoc PiSize $
|
||||||
|
> if x `occursIn` _T
|
||||||
|
> then (\ x' _S' _T' -> text "Sig" <+> parens (x' <+> colon <+> _S') <+> _T')
|
||||||
|
> <$> prettyHigh x <*> prettyHigh _S <*> prettyAt ArgSize _T
|
||||||
|
> else between (text "*") <$> prettyAt AppSize _S <*> prettyAt PiSize _T
|
||||||
|
>
|
||||||
|
> pretty (L b) = wrapDoc LamSize $ (text "\\" <+>) <$> prettyLam b
|
||||||
|
> where
|
||||||
|
> prettyLam u = lunbind u $ \ (x, t) -> do
|
||||||
|
> v <- if x `occursIn` t then prettyLow x else return (text "_")
|
||||||
|
> case t of
|
||||||
|
> L b' -> (v <+>) <$> prettyLam b'
|
||||||
|
> _ -> (\ t' -> v <+> text "." <+> t') <$> prettyAt LamSize t
|
||||||
|
> pretty (N h []) = pretty h
|
||||||
|
> pretty (N h as) = wrapDoc AppSize $
|
||||||
|
> (\ h' as' -> h' <+> hsep as')
|
||||||
|
> <$> pretty h <*> mapM (prettyAt ArgSize) as
|
||||||
|
> pretty (C c []) = pretty c
|
||||||
|
> pretty (C c as) = wrapDoc AppSize $
|
||||||
|
> (\ c' as' -> c' <+> hsep as')
|
||||||
|
> <$> pretty c <*> mapM (prettyAt ArgSize) as
|
||||||
|
|
||||||
|
> instance Pretty Can where
|
||||||
|
> pretty c = return $ text $ show c
|
||||||
|
|
||||||
|
> instance Pretty Twin where
|
||||||
|
> pretty Only = pure empty
|
||||||
|
> pretty TwinL = pure $ text "^<"
|
||||||
|
> pretty TwinR = pure $ text "^>"
|
||||||
|
|
||||||
|
> instance Pretty Head where
|
||||||
|
> pretty (Var x w) = (<>) <$> pretty x <*> pretty w
|
||||||
|
> pretty (Meta x) = (text "?" <>) <$> pretty x
|
||||||
|
|
||||||
|
> instance Pretty Elim where
|
||||||
|
> pretty (A a) = pretty a
|
||||||
|
> pretty Hd = return $ text "!"
|
||||||
|
> pretty Tl = return $ text "-"
|
||||||
|
|
||||||
|
|
||||||
|
> var :: Nom -> VAL
|
||||||
|
> var x = N (Var x Only) []
|
||||||
|
|
||||||
|
> twin :: Nom -> Twin -> VAL
|
||||||
|
> twin x w = N (Var x w) []
|
||||||
|
|
||||||
|
> meta :: Nom -> VAL
|
||||||
|
> meta x = N (Meta x) []
|
||||||
|
|
||||||
|
|
||||||
|
> lam :: Nom -> VAL -> VAL
|
||||||
|
> lam x t = L (bind x t)
|
||||||
|
|
||||||
|
> lams :: [Nom] -> VAL -> VAL
|
||||||
|
> lams xs t = foldr lam t xs
|
||||||
|
|
||||||
|
> lams' :: [(Nom, Type)] -> VAL -> VAL
|
||||||
|
> lams' xs = lams $ map fst xs
|
||||||
|
|
||||||
|
> lamK :: VAL -> VAL
|
||||||
|
> lamK t = L (bind (s2n "_x") t)
|
||||||
|
|
||||||
|
> _Pi :: Nom -> Type -> Type -> Type
|
||||||
|
> _Pi x _S _T = PI _S (lam x _T)
|
||||||
|
|
||||||
|
> _Pis :: [(Nom, Type)] -> Type -> Type
|
||||||
|
> _Pis xs _T = foldr (uncurry _Pi) _T xs
|
||||||
|
|
||||||
|
> (-->) :: Type -> Type -> Type
|
||||||
|
> _S --> _T = _Pi (s2n "xp") _S _T
|
||||||
|
> infixr 5 -->
|
||||||
|
|
||||||
|
> _Sig :: Nom -> Type -> Type -> Type
|
||||||
|
> _Sig x _S _T = SIG _S (lam x _T)
|
||||||
|
|
||||||
|
> (*:) :: Type -> Type -> Type
|
||||||
|
> _S *: _T = _Sig (s2n "xx") _S _T
|
||||||
|
|
||||||
|
> vv :: String -> VAL
|
||||||
|
> vv x = var (s2n x)
|
||||||
|
|
||||||
|
> mv :: String -> VAL
|
||||||
|
> mv x = meta (s2n x)
|
||||||
|
|
||||||
|
> ll :: String -> VAL -> VAL
|
||||||
|
> ll x = lam (s2n x)
|
||||||
|
|
||||||
|
> _PI :: String -> VAL -> VAL -> VAL
|
||||||
|
> _PI x = _Pi (s2n x)
|
||||||
|
|
||||||
|
> _SIG :: String -> VAL -> VAL -> VAL
|
||||||
|
> _SIG x = _Sig (s2n x)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> mapElim :: (VAL -> VAL) -> Elim -> Elim
|
||||||
|
> mapElim f (A a) = A (f a)
|
||||||
|
> mapElim _ Hd = Hd
|
||||||
|
> mapElim _ Tl = Tl
|
||||||
|
|
||||||
|
> headVar :: Head -> Nom
|
||||||
|
> headVar (Var x _) = x
|
||||||
|
> headVar (Meta x) = x
|
||||||
|
|
||||||
|
> isVar :: VAL -> Bool
|
||||||
|
> isVar v = case etaContract v of
|
||||||
|
> N (Var _ _) [] -> True
|
||||||
|
> _ -> False
|
||||||
|
|
||||||
|
> toVars :: [Elim] -> Maybe [Nom]
|
||||||
|
> toVars = traverse (toVar . mapElim etaContract)
|
||||||
|
> where
|
||||||
|
> toVar :: Elim -> Maybe Nom
|
||||||
|
> toVar (A (N (Var x _) [])) = Just x
|
||||||
|
> toVar _ = Nothing
|
||||||
|
|
||||||
|
> linearOn :: VAL -> [Nom] -> Bool
|
||||||
|
> linearOn _ [] = True
|
||||||
|
> linearOn t (a:as) = not (a `occursIn` t && a `elem` as) && linearOn t as
|
||||||
|
|
||||||
|
> initLast :: [x] -> Maybe ([x], x)
|
||||||
|
> initLast [] = Nothing
|
||||||
|
> initLast xs = Just (init xs, last xs)
|
||||||
|
|
||||||
|
> etaContract :: VAL -> VAL
|
||||||
|
> etaContract (L b) = case etaContract t of
|
||||||
|
> N x as | Just (bs, A (N (Var y' _) [])) <- initLast as, y == y',
|
||||||
|
> not (y `occursIn` bs) -> N x bs
|
||||||
|
> t' -> lam y t'
|
||||||
|
> where
|
||||||
|
> (y, t) = unsafeUnbind b
|
||||||
|
> etaContract (N x as) = N x (map (mapElim etaContract) as)
|
||||||
|
> etaContract (PAIR s t) = case (etaContract s, etaContract t) of
|
||||||
|
> (N x as, N y bs) | Just (as', Hd) <- initLast as,
|
||||||
|
> Just (bs', Tl) <- initLast bs,
|
||||||
|
> x == y,
|
||||||
|
> as' == bs' -> N x as'
|
||||||
|
> (s', t') -> PAIR s' t'
|
||||||
|
> etaContract (C c as) = C c (map etaContract as)
|
||||||
|
|
||||||
|
> occursIn :: Occurs t => Nom -> t -> Bool
|
||||||
|
> x `occursIn` t = x `Set.member` fvs t
|
||||||
|
|
||||||
|
|
||||||
|
> data Strength = Weak | Strong
|
||||||
|
> deriving (Eq, Ord, Show)
|
||||||
|
|
||||||
|
> data Occurrence = Flexible | Rigid Strength
|
||||||
|
> deriving (Eq, Ord, Show)
|
||||||
|
|
||||||
|
> isStrongRigid :: Maybe Occurrence -> Bool
|
||||||
|
> isStrongRigid (Just (Rigid Strong)) = True
|
||||||
|
> isStrongRigid _ = False
|
||||||
|
|
||||||
|
> isRigid :: Maybe Occurrence -> Bool
|
||||||
|
> isRigid (Just (Rigid _)) = True
|
||||||
|
> isRigid _ = False
|
||||||
|
|
||||||
|
> isFlexible :: Maybe Occurrence -> Bool
|
||||||
|
> isFlexible (Just Flexible) = True
|
||||||
|
> isFlexible _ = False
|
||||||
|
|
||||||
|
> fvs :: Occurs t => t -> Set Nom
|
||||||
|
> fvs = frees False
|
||||||
|
|
||||||
|
> fmvs :: Occurs t => t -> Set Nom
|
||||||
|
> fmvs = frees True
|
||||||
|
|
||||||
|
> class Occurs t where
|
||||||
|
> occurrence :: [Nom] -> t -> Maybe Occurrence
|
||||||
|
> frees :: Bool -> t -> Set Nom
|
||||||
|
|
||||||
|
> instance Occurs Nom where
|
||||||
|
> occurrence _ _ = Nothing
|
||||||
|
> frees _ _ = Set.empty
|
||||||
|
|
||||||
|
> instance Occurs VAL where
|
||||||
|
> occurrence xs (L (B _ b)) = occurrence xs b
|
||||||
|
> occurrence xs (C _ as) = occurrence xs as
|
||||||
|
> occurrence xs (N (Var y _) as)
|
||||||
|
> | y `elem` xs = Just (Rigid Strong)
|
||||||
|
> | otherwise = weaken <$> occurrence xs as
|
||||||
|
> where weaken (Rigid _) = Rigid Weak
|
||||||
|
> weaken Flexible = Flexible
|
||||||
|
> occurrence xs (N (Meta y) as)
|
||||||
|
> | y `elem` xs = Just (Rigid Strong)
|
||||||
|
> | otherwise = Flexible <$ occurrence xs as
|
||||||
|
|
||||||
|
> frees isMeta (L (B _ t)) = frees isMeta t
|
||||||
|
> frees isMeta (C _ as) = Set.unions (map (frees isMeta) as)
|
||||||
|
> frees isMeta (N h es) = Set.unions (map (frees isMeta) es)
|
||||||
|
> `Set.union` x
|
||||||
|
> where x = case h of
|
||||||
|
> Var v _ | not isMeta && isFreeName v -> Set.singleton v
|
||||||
|
> Meta v | isMeta && isFreeName v -> Set.singleton v
|
||||||
|
> _ -> Set.empty
|
||||||
|
|
||||||
|
> instance Occurs Elim where
|
||||||
|
> occurrence xs (A a) = occurrence xs a
|
||||||
|
> occurrence _ _ = Nothing
|
||||||
|
> frees isMeta (A a) = frees isMeta a
|
||||||
|
> frees _ _ = Set.empty
|
||||||
|
|
||||||
|
> instance (Occurs a, Occurs b) => Occurs (a, b) where
|
||||||
|
> occurrence xs (s, t) = max (occurrence xs s) (occurrence xs t)
|
||||||
|
> frees isMeta (s, t) = frees isMeta s `Set.union` frees isMeta t
|
||||||
|
|
||||||
|
> instance (Occurs a, Occurs b, Occurs c) => Occurs (a, b, c) where
|
||||||
|
> occurrence xs (s, t, u) = maximum [occurrence xs s, occurrence xs t, occurrence xs u]
|
||||||
|
> frees isMeta (s, t, u) = Set.unions [frees isMeta s, frees isMeta t, frees isMeta u]
|
||||||
|
|
||||||
|
> instance Occurs a => Occurs [a] where
|
||||||
|
> occurrence _ [] = Nothing
|
||||||
|
> occurrence xs ys = maximum $ map (occurrence xs) ys
|
||||||
|
> frees isMeta = Set.unions . map (frees isMeta)
|
||||||
|
|
||||||
|
|
||||||
|
> type Subs = [(Nom, VAL)]
|
||||||
|
|
||||||
|
> compSubs :: Subs -> Subs -> Subs
|
||||||
|
> compSubs new old = unionBy ((==) `on` fst) new (substs new old)
|
||||||
|
|
||||||
|
> eval :: Subs -> VAL -> VAL
|
||||||
|
> eval g (L b) = L (bind x (eval g t))
|
||||||
|
> where (x, t) = unsafeUnbind b
|
||||||
|
> eval g (N u as) = evalHead g u %%% map (mapElim (eval g)) as
|
||||||
|
> eval g (C c as) = C c (map (eval g) as)
|
||||||
|
|
||||||
|
> evalHead :: Subs -> Head -> VAL
|
||||||
|
> evalHead g hv = case lookup (headVar hv) g of
|
||||||
|
> Just u -> u
|
||||||
|
> Nothing -> N hv []
|
||||||
|
|
||||||
|
> elim :: VAL -> Elim -> VAL
|
||||||
|
> elim (L b) (A a) = eval [(x, a)] t where (x, t) = unsafeUnbind b
|
||||||
|
> elim (N u as) e = N u $ as ++ [e]
|
||||||
|
> elim (PAIR x _) Hd = x
|
||||||
|
> elim (PAIR _ y) Tl = y
|
||||||
|
> elim t a = error $ "bad elimination of " ++ pp t ++ " by " ++ pp a
|
||||||
|
|
||||||
|
> ($$) :: VAL -> VAL -> VAL
|
||||||
|
> f $$ a = elim f (A a)
|
||||||
|
|
||||||
|
> ($$$) :: VAL -> [VAL] -> VAL
|
||||||
|
> ($$$) = foldl ($$)
|
||||||
|
|
||||||
|
> ($*$) :: VAL -> [(Nom, a)] -> VAL
|
||||||
|
> f $*$ _Gam = f $$$ map (var . fst) _Gam
|
||||||
|
|
||||||
|
> (%%) :: VAL -> Elim -> VAL
|
||||||
|
> (%%) = elim
|
||||||
|
|
||||||
|
> (%%%) :: VAL -> [Elim] -> VAL
|
||||||
|
> (%%%) = foldl (%%)
|
639
Unify.lhs
Normal file
639
Unify.lhs
Normal file
|
@ -0,0 +1,639 @@
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> module Unify where
|
||||||
|
|
||||||
|
> import Control.Monad.Except (catchError, throwError, when)
|
||||||
|
> import Control.Monad.Reader (ask)
|
||||||
|
|
||||||
|
> import Data.List ((\\))
|
||||||
|
> import Data.Maybe (isNothing)
|
||||||
|
> import Data.Set (Set)
|
||||||
|
> import qualified Data.Set as Set
|
||||||
|
|
||||||
|
> import Unbound.Generics.LocallyNameless (aeq, unbind, subst, substs, Fresh)
|
||||||
|
|
||||||
|
> import Kit (pp)
|
||||||
|
> import Tm (VAL(..), Elim(..), Head(..), Twin(..),
|
||||||
|
> pattern SET, pattern PI, pattern SIG, pattern PAIR,
|
||||||
|
> Nom, Type, Subs,
|
||||||
|
> ($$), (%%), ($*$),
|
||||||
|
> var, lam, lams, lams', _Pi, _Pis, (-->),
|
||||||
|
> freshNom, compSubs, occurrence, toVars, linearOn,
|
||||||
|
> isStrongRigid, isRigid, isFlexible, fvs, fmvs, isVar)
|
||||||
|
> import Check (checkProb, check, typecheck, equal, isReflexive)
|
||||||
|
> import Context (Entry(..), ProblemState(..), Problem(..), Equation(..),
|
||||||
|
> Dec(..), Param(..), Contextual, ProbId(..),
|
||||||
|
> allProb, allTwinsProb, wrapProb,
|
||||||
|
> pushL, popL, pushR, popR,
|
||||||
|
> lookupVar, localParams, lookupMeta)
|
||||||
|
|
||||||
|
> notSubsetOf :: Ord a => Set a -> Set a -> Bool
|
||||||
|
> a `notSubsetOf` b = not (a `Set.isSubsetOf` b)
|
||||||
|
|
||||||
|
> vars :: Ord a => [(a, b)] -> Set a
|
||||||
|
> vars = Set.fromList . map fst
|
||||||
|
|
||||||
|
> active :: ProbId -> Equation -> Contextual ()
|
||||||
|
> block :: ProbId -> Equation -> Contextual ()
|
||||||
|
> failed :: ProbId -> Equation -> String -> Contextual ()
|
||||||
|
> solved :: ProbId -> Equation -> Contextual ()
|
||||||
|
> simplify :: ProbId -> Problem -> [Problem] -> Contextual ()
|
||||||
|
|
||||||
|
> active n q = putProb n (Unify q) Active
|
||||||
|
> block n q = putProb n (Unify q) Blocked
|
||||||
|
> failed n q e = putProb n (Unify q) (Failed e)
|
||||||
|
> solved n q = pendingSolve n (Unify q) []
|
||||||
|
|
||||||
|
> putProb :: ProbId -> Problem -> ProblemState ->
|
||||||
|
> Contextual ()
|
||||||
|
> putProb x q s = do
|
||||||
|
> _Gam <- ask
|
||||||
|
> pushR . Right $ Prob x (wrapProb _Gam q) s
|
||||||
|
|
||||||
|
> pendingSolve :: ProbId -> Problem -> [ProbId] ->
|
||||||
|
> Contextual ()
|
||||||
|
> pendingSolve n q [] = do checkProb Solved q `catchError`
|
||||||
|
> (error . (++ "when checking problem " ++
|
||||||
|
> pp n ++ " : " ++ pp q))
|
||||||
|
> putProb n q Solved
|
||||||
|
> pendingSolve n q ds = putProb n q (Pending ds)
|
||||||
|
|
||||||
|
> simplify n q rs = help rs []
|
||||||
|
> where
|
||||||
|
> help :: [Problem] -> [ProbId] -> Contextual ()
|
||||||
|
> help [] xs = pendingSolve n q xs
|
||||||
|
> help (p:ps) xs = subgoal p (\ x -> help ps (x:xs))
|
||||||
|
>
|
||||||
|
> subgoal :: Problem -> (ProbId -> Contextual a) ->
|
||||||
|
> Contextual a
|
||||||
|
> subgoal p f = do
|
||||||
|
> x <- ProbId <$> freshNom
|
||||||
|
> _Gam <- ask
|
||||||
|
> pushL $ Prob x (wrapProb _Gam p) Active
|
||||||
|
> a <- f x
|
||||||
|
> goLeft
|
||||||
|
> return a
|
||||||
|
|
||||||
|
> goLeft :: Contextual ()
|
||||||
|
> goLeft = popL >>= pushR . Right
|
||||||
|
|
||||||
|
> hole :: [(Nom, Type)] -> Type ->
|
||||||
|
> (VAL -> Contextual a) -> Contextual a
|
||||||
|
> define :: [(Nom, Type)] -> Nom -> Type -> VAL ->
|
||||||
|
> Contextual ()
|
||||||
|
|
||||||
|
> hole _Gam _T f = do check SET (_Pis _Gam _T) `catchError`
|
||||||
|
> (error . (++ "\nwhen creating hole of type " ++
|
||||||
|
> pp (_Pis _Gam _T)))
|
||||||
|
> x <- freshNom
|
||||||
|
> pushL $ E x (_Pis _Gam _T) HOLE
|
||||||
|
> a <- f (N (Meta x) [] $*$ _Gam)
|
||||||
|
> goLeft
|
||||||
|
> return a
|
||||||
|
|
||||||
|
> defineGlobal :: Nom -> Type -> VAL -> Contextual a ->
|
||||||
|
> Contextual a
|
||||||
|
> defineGlobal x _T v m = do check _T v `catchError`
|
||||||
|
> (error . (++ "\nwhen defining " ++
|
||||||
|
> pp x ++ " : " ++ pp _T ++
|
||||||
|
> " to be " ++ pp v))
|
||||||
|
> pushL $ E x _T (DEFN v)
|
||||||
|
> pushR (Left [(x, v)])
|
||||||
|
> a <- m
|
||||||
|
> goLeft
|
||||||
|
> return a
|
||||||
|
|
||||||
|
> define _Gam x _T v =
|
||||||
|
> defineGlobal x (_Pis _Gam _T) (lams' _Gam v) (return ())
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Unification}
|
||||||
|
\label{subsec:impl:unification}
|
||||||
|
|
||||||
|
As we have seen, unification splits into four main cases:
|
||||||
|
$\eta$-expanding elements of $\Pi$ or $\Sigma$ types, rigid-rigid
|
||||||
|
equations between non-metavariable terms (Figure~\ref{fig:decompose}),
|
||||||
|
flex-rigid equations between a metavariable and a rigid term
|
||||||
|
(Figure~\ref{fig:flex-rigid}), and flex-flex equations between two
|
||||||
|
metavariables (Figure~\ref{fig:flex-flex}). When the equation is
|
||||||
|
between two functions, we use twins (see
|
||||||
|
subsection~\ref{subsec:twins}) to decompose it heterogeneously. If it
|
||||||
|
is in fact homogeneous, the twins will be simplified away later.
|
||||||
|
|
||||||
|
We will take slight liberties, here and elsewhere, with the Haskell
|
||||||
|
syntax. In particular, we will use italicised capital letters (e.g.\
|
||||||
|
|_A|) for Haskell variables representing types in the object language,
|
||||||
|
while sans-serif letters (e.g.\ |A|) will continue to stand for data
|
||||||
|
constructors.
|
||||||
|
|
||||||
|
> unify :: ProbId -> Equation -> Contextual ()
|
||||||
|
>
|
||||||
|
> unify n q@(EQN (PI _A _B) f (PI _S _T) g) = do
|
||||||
|
> x <- freshNom
|
||||||
|
> let (xL, xR) = (N (Var x TwinL) [], N (Var x TwinR) [])
|
||||||
|
> simplify n (Unify q) [ Unify (EQN SET _A SET _S),
|
||||||
|
> allTwinsProb x _A _S (Unify (EQN (_B $$ xL) (f $$ xL) (_T $$ xR) (g $$ xR)))]
|
||||||
|
> unify n q@(EQN (SIG _A _B) t (SIG _C _D) w) =
|
||||||
|
> simplify n (Unify q) [ Unify (EQN _A a _C c)
|
||||||
|
> , Unify (EQN (_B $$ a) b (_D $$ c) d)]
|
||||||
|
> where (a, b) = (t %% Hd, t %% Tl)
|
||||||
|
> (c, d) = (w %% Hd, w %% Tl)
|
||||||
|
>
|
||||||
|
> unify n q@(EQN _ (N (Meta _) _) _ (N (Meta _) _)) =
|
||||||
|
> tryPrune n q $ tryPrune n (sym q) $ flexFlex n q
|
||||||
|
>
|
||||||
|
> unify n q@(EQN _ (N (Meta _) _) _ _) =
|
||||||
|
> tryPrune n q $ flexRigid [] n q
|
||||||
|
>
|
||||||
|
> unify n q@(EQN _ _ _ (N (Meta _) _)) =
|
||||||
|
> tryPrune n (sym q) $ flexRigid [] n (sym q)
|
||||||
|
>
|
||||||
|
> unify n q = rigidRigid q >>=
|
||||||
|
> simplify n (Unify q) . map Unify
|
||||||
|
|
||||||
|
Here |sym| swaps the two sides of an equation:
|
||||||
|
|
||||||
|
> sym :: Equation -> Equation
|
||||||
|
> sym (EQN _S s _T t) = EQN _T t _S s
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Rigid-rigid decomposition}
|
||||||
|
\label{subsec:impl:rigid-rigid}
|
||||||
|
|
||||||
|
A rigid-rigid equation (between two non-metavariable terms) can either
|
||||||
|
be decomposed into simpler equations or it is impossible to solve. For
|
||||||
|
example, $[[Pi A B == Pi S T]]$ splits into $[[A == S]], [[B == T]]$,
|
||||||
|
but $[[Pi A B == Sigma S T]]$ cannot be solved.
|
||||||
|
|
||||||
|
%% The |rigidRigid|
|
||||||
|
%% function implements the steps shown in Figure~\ref{fig:decompose}.
|
||||||
|
%% excluding the $\eta$-expansion steps, which are handled by |unify|
|
||||||
|
%% above.
|
||||||
|
|
||||||
|
> rigidRigid :: Equation -> Contextual [Equation]
|
||||||
|
> rigidRigid (EQN SET SET SET SET) = return []
|
||||||
|
>
|
||||||
|
> rigidRigid (EQN SET (PI _A _B) SET (PI _S _T)) =
|
||||||
|
> return [ EQN SET _A SET _S
|
||||||
|
> , EQN (_A --> SET) _B (_S --> SET) _T]
|
||||||
|
>
|
||||||
|
> rigidRigid (EQN SET (SIG _A _B) SET (SIG _S _T)) =
|
||||||
|
> return [ EQN SET _A SET _S
|
||||||
|
> , EQN (_A --> SET) _B (_S --> SET) _T]
|
||||||
|
>
|
||||||
|
> rigidRigid (EQN _S (N (Var x w) ds) _T (N (Var y w') es))
|
||||||
|
> | x == y = do
|
||||||
|
> _X <- lookupVar x w
|
||||||
|
> _Y <- lookupVar y w'
|
||||||
|
> (EQN SET _X SET _Y :) <$>
|
||||||
|
> matchSpine _X (N (Var x w) []) ds
|
||||||
|
> _Y (N (Var y w') []) es
|
||||||
|
>
|
||||||
|
> rigidRigid _ = throwError "Rigid-rigid mismatch"
|
||||||
|
|
||||||
|
|
||||||
|
When we have the same rigid variable (or twins) at the head on both
|
||||||
|
sides, we proceed down the spine, demanding that projections are
|
||||||
|
identical and unifying terms in applications. Note that |matchSpine|
|
||||||
|
heterogeneously unfolds the types of the terms being applied to
|
||||||
|
determine the types of the arguments. For example, if
|
||||||
|
$[[x : Pi a : A . B a -> C]]$ then the constraint $[[x s t == x u v]]$
|
||||||
|
will decompose into
|
||||||
|
$[[(s : A) == (u : A) && (t : B s) == (v : B u)]]$.
|
||||||
|
|
||||||
|
> matchSpine :: Type -> VAL -> [Elim] ->
|
||||||
|
> Type -> VAL -> [Elim] ->
|
||||||
|
> Contextual [Equation]
|
||||||
|
> matchSpine (PI _A _B) u (A a:ds)
|
||||||
|
> (PI _S _T) v (A s:es) =
|
||||||
|
> (EQN _A a _S s :) <$>
|
||||||
|
> matchSpine (_B $$ a) (u $$ a) ds (_T $$ s) (v $$ s) es
|
||||||
|
> matchSpine (SIG _A _B) u (Hd:ds) (SIG _S _T) v (Hd:es) =
|
||||||
|
> matchSpine _A (u %% Hd) ds _S (v %% Hd) es
|
||||||
|
> matchSpine (SIG _A _B) u (Tl:ds) (SIG _S _T) v (Tl:es) =
|
||||||
|
> matchSpine (_B $$ a) b ds (_T $$ s) t es
|
||||||
|
> where (a, b) = (u %% Hd, u %% Tl)
|
||||||
|
> (s, t) = (v %% Hd, v %% Tl)
|
||||||
|
> matchSpine _ _ [] _ _ [] = return []
|
||||||
|
> matchSpine _ _ _ _ _ _ = throwError "spine mismatch"
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Flex-rigid equations}
|
||||||
|
\label{subsec:impl:flex-rigid}
|
||||||
|
|
||||||
|
A flex-rigid unification problem is one where one side is an applied
|
||||||
|
metavariable and the other is a non-metavariable term. We move left
|
||||||
|
in the context, accumulating a list of metavariables that the term
|
||||||
|
depends on (the bracketed list of entries $[[XI]]$ in the rules).
|
||||||
|
Once we reach the target metavariable, we attempt to find a solution
|
||||||
|
by inversion. This implements the steps in
|
||||||
|
Figure~\ref{fig:flex-rigid}, as described in
|
||||||
|
subsection~\ref{subsec:spec:flex-rigid}.
|
||||||
|
|
||||||
|
> flexRigid :: [Entry] -> ProbId -> Equation -> Contextual ()
|
||||||
|
> flexRigid _Xi n q@(EQN _ (N (Meta alpha) _) _ _) = do
|
||||||
|
> _Gam <- ask
|
||||||
|
> popL >>= \ e -> case e of
|
||||||
|
> E beta _T HOLE
|
||||||
|
> | alpha == beta && alpha `elem` fmvs _Xi -> pushL e >>
|
||||||
|
> mapM_ pushL _Xi >>
|
||||||
|
> block n q
|
||||||
|
> | alpha == beta -> mapM_ pushL _Xi >>
|
||||||
|
> tryInvert n q _T
|
||||||
|
> ( block n q >>
|
||||||
|
> pushL e)
|
||||||
|
> | beta `elem` fmvs (_Gam, _Xi, q) -> flexRigid (e : _Xi) n q
|
||||||
|
> _ -> pushR (Right e) >>
|
||||||
|
> flexRigid _Xi n q
|
||||||
|
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> flexRigid _ _ q = error $ "flexRigid: " ++ show q
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
Given a flex-rigid or flex-flex equation whose head metavariable has
|
||||||
|
just been found in the context, the |tryInvert| control operator calls
|
||||||
|
|invert| to seek a solution to the equation. If it finds one, it
|
||||||
|
defines the metavariable and leaves the equation in the context (so
|
||||||
|
the definition will be substituted out and the equation found to be
|
||||||
|
reflexive by the constraint solver). If |invert| cannot find a
|
||||||
|
solution, it runs the continuation.
|
||||||
|
|
||||||
|
> tryInvert :: ProbId -> Equation -> Type -> Contextual () ->
|
||||||
|
> Contextual ()
|
||||||
|
> tryInvert n q@(EQN _ (N (Meta alpha) es) _ s) _T k =
|
||||||
|
> invert alpha _T es s >>= \case
|
||||||
|
> Nothing -> k
|
||||||
|
> Just v -> active n q >>
|
||||||
|
> define [] alpha _T v
|
||||||
|
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> tryInvert _ _ q _ = error $ "tryInvert: " ++ show q
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
|
||||||
|
Given a metavariable $[[alpha]]$ of type $[[T]]$, spine
|
||||||
|
$[[</ ei // i/>]]$ and term $[[t]]$, |invert| attempts to find a value
|
||||||
|
for $[[alpha]]$ that solves the equation
|
||||||
|
$[[alpha </ ei // i /> == t]]$. It may also throw an error
|
||||||
|
if the problem is unsolvable due to an impossible (strong rigid)
|
||||||
|
occurrence.
|
||||||
|
|
||||||
|
> invert :: Nom -> Type -> [Elim] -> VAL ->
|
||||||
|
> Contextual (Maybe VAL)
|
||||||
|
> invert alpha _T es t = do
|
||||||
|
> let o = occurrence [alpha] t
|
||||||
|
> when (isStrongRigid o) $ throwError "occurrence"
|
||||||
|
> case toVars es of
|
||||||
|
> Just xs | isNothing o && linearOn t xs -> do
|
||||||
|
> b <- localParams (const []) (typecheck _T (lams xs t))
|
||||||
|
> return $ if b then Just (lams xs t) else Nothing
|
||||||
|
> _ -> return Nothing
|
||||||
|
|
||||||
|
Here |toVars :: [Elim] -> Maybe [Nom]| tries to convert a spine to a
|
||||||
|
list of variables, and |linearOn :: VAL -> [Nom] -> Bool| determines
|
||||||
|
if a list of variables is linear on the free variables of a term. Note
|
||||||
|
that we typecheck the solution |lams xs t| under no parameters, so
|
||||||
|
typechecking will fail if an out-of-scope variable is used.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Flex-flex equations}
|
||||||
|
\label{subsec:impl:flex-flex}
|
||||||
|
|
||||||
|
A flex-flex unification problem is one where both sides are applied
|
||||||
|
metavariables. As in the flex-rigid case, we proceed leftwards
|
||||||
|
through the context, looking for one of the metavariables so we can
|
||||||
|
try to solve it with the other. This implements the steps in
|
||||||
|
Figure~\ref{fig:flex-flex}, as described in
|
||||||
|
subsection~\ref{subsec:spec:flex-flex}.
|
||||||
|
|
||||||
|
> flexFlex :: ProbId -> Equation -> Contextual ()
|
||||||
|
> flexFlex n q@(EQN _ (N (Meta alpha) ds) _ (N (Meta beta) es)) = do
|
||||||
|
> _Gam <- ask
|
||||||
|
> popL >>= \ e -> case e of
|
||||||
|
> E gamma _T HOLE
|
||||||
|
> | gamma == alpha && gamma == beta -> block n q >>
|
||||||
|
> tryIntersect alpha _T ds es
|
||||||
|
> | gamma == alpha -> tryInvert n q _T
|
||||||
|
> (flexRigid [e] n (sym q))
|
||||||
|
> | gamma == beta -> tryInvert n (sym q) _T
|
||||||
|
> (flexRigid [e] n q)
|
||||||
|
> | gamma `elem` fmvs (_Gam, q) -> pushL e >>
|
||||||
|
> block n q
|
||||||
|
> _ -> pushR (Right e) >>
|
||||||
|
> flexFlex n q
|
||||||
|
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> flexFlex _ q = error $ "flexFlex: " ++ show q
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
%% Consider the case $[[alpha </ ei // i /> == beta </ xj // j />]]$
|
||||||
|
%% where $[[</ xj // j />]]$ is a list of variables but
|
||||||
|
%% $[[</ ei // i />]]$ is not. If we reach $[[alpha]]$ first then we
|
||||||
|
%% might get stuck even if we could potentially solve for
|
||||||
|
%% $[[beta]]$. This would be correct if order were important in the
|
||||||
|
%% metacontext, for example if we wanted to implement let-generalisation
|
||||||
|
%% \citep{gundry2010}. Here it is not, so we can simply pick up
|
||||||
|
%% $[[alpha]]$ and carry on moving left.
|
||||||
|
|
||||||
|
|
||||||
|
When we have a flex-flex equation with the same metavariable on both
|
||||||
|
sides, $[[alpha </ xi // i /> == alpha </ yi // i />]]$, where
|
||||||
|
$[[</ xi // i />]]$ and $[[</ yi // i />]]$ are both lists of
|
||||||
|
variables, we can solve the equation by restricting $[[alpha]]$ to the
|
||||||
|
arguments on which $[[</ xi // i />]]$ and $[[</ yi // i />]]$ agree
|
||||||
|
(i.e. creating a new metavariable $[[beta]]$ and using it to solve
|
||||||
|
$[[alpha]]$). The |tryIntersect| control operator tests if both spines are
|
||||||
|
lists of variables, then calls |intersect| to generate a restricted
|
||||||
|
type for the metavariable. If this succeeds, it creates a new
|
||||||
|
metavariable and solves the old one. Otherwise, it leaves the old
|
||||||
|
metavariable in the context.
|
||||||
|
|
||||||
|
> tryIntersect :: Nom -> Type -> [Elim] -> [Elim] ->
|
||||||
|
> Contextual ()
|
||||||
|
> tryIntersect alpha _T ds es = case (toVars ds, toVars es) of
|
||||||
|
> (Just xs, Just ys) -> intersect [] [] _T xs ys >>= \case
|
||||||
|
> Just (_U, f) -> hole [] _U $ \ beta ->
|
||||||
|
> define [] alpha _T (f beta)
|
||||||
|
> Nothing -> pushL (E alpha _T HOLE)
|
||||||
|
> _ -> pushL (E alpha _T HOLE)
|
||||||
|
|
||||||
|
Given the type of $[[alpha]]$ and the two spines, |intersect| produces
|
||||||
|
a type for $[[beta]]$ and a term with which to solve $[[alpha]]$ given
|
||||||
|
$[[beta]]$. It accumulates lists of the original and retained
|
||||||
|
parameters (|_Phi| and |_Psi| respectively).
|
||||||
|
|
||||||
|
> intersect :: Fresh m => [(Nom, Type)] -> [(Nom, Type)] ->
|
||||||
|
> Type -> [Nom] -> [Nom] ->
|
||||||
|
> m (Maybe (Type, VAL -> VAL))
|
||||||
|
> intersect _Phi _Psi _S [] []
|
||||||
|
> | fvs _S `Set.isSubsetOf` vars _Psi = return $ Just
|
||||||
|
> (_Pis _Psi _S, \ beta -> lams' _Phi (beta $*$ _Psi))
|
||||||
|
> | otherwise = return Nothing
|
||||||
|
> intersect _Phi _Psi (PI _A _B) (x:xs) (y:ys) = do
|
||||||
|
> z <- freshNom
|
||||||
|
> let _Psi' = _Psi ++ if x == y then [(z, _A)] else []
|
||||||
|
> intersect (_Phi ++ [(z, _A)]) _Psi' (_B $$ var z) xs ys
|
||||||
|
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> intersect _ _ _ _ _ = error "intersect: ill-typed!"
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
Note that we have to generate fresh names in case the renamings are
|
||||||
|
not linear. Also note that the resulting type is well-formed: if the
|
||||||
|
domain of a $\Pi$ depends on a previous variable that was removed,
|
||||||
|
then the renamings will not agree, so it will be removed as well.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Pruning}
|
||||||
|
\label{subsec:impl:pruning}
|
||||||
|
|
||||||
|
When we have a flex-rigid or flex-flex equation, we might be able to
|
||||||
|
make some progress by pruning the metavariables contained within it,
|
||||||
|
as described in Figure~\ref{fig:pruning} and
|
||||||
|
subsection~\ref{subsec:spec:pruning}. The |tryPrune| control operator calls
|
||||||
|
|prune|, and if it learns anything from pruning, leaves the current
|
||||||
|
problem where it is and instantiates the pruned metavariable. If not,
|
||||||
|
it runs the continuation.
|
||||||
|
|
||||||
|
> tryPrune :: ProbId -> Equation ->
|
||||||
|
> Contextual () -> Contextual ()
|
||||||
|
> tryPrune n q@(EQN _ (N (Meta _) ds) _ t) k = do
|
||||||
|
> _Gam <- ask
|
||||||
|
> u <- prune (Set.toList $ vars _Gam Set.\\ fvs ds) t
|
||||||
|
> case u of
|
||||||
|
> d:_ -> active n q >> instantiate d
|
||||||
|
> [] -> k
|
||||||
|
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> tryPrune _ q _ = error $ "tryPrune: " ++ show q
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
Pruning a term requires traversing it looking for occurrences of
|
||||||
|
forbidden variables. If any occur rigidly, the corresponding
|
||||||
|
constraint is impossible. On the other hand, if we encounter a
|
||||||
|
metavariable, we observe that it cannot depend on any arguments that
|
||||||
|
contain rigid occurrences of forbidden variables. This can be
|
||||||
|
implemented by replacing it with a fresh variable of restricted type.
|
||||||
|
The |prune| function generates a list of triples |(beta, _U, f)| where
|
||||||
|
|beta| is a metavariable, |_U| is a type for a new metavariable
|
||||||
|
|gamma| and |f gamma| is a solution for |beta|. We maintain the
|
||||||
|
invariant that |_U| and |f gamma| depend only on metavariables defined
|
||||||
|
prior to |beta| in the context.
|
||||||
|
|
||||||
|
> prune :: [Nom] -> VAL ->
|
||||||
|
> Contextual [(Nom, Type, VAL -> VAL)]
|
||||||
|
> prune _ SET = return []
|
||||||
|
> prune xs (PI _S _T) = (++) <$> prune xs _S <*> prune xs _T
|
||||||
|
> prune xs (SIG _S _T) = (++) <$> prune xs _S <*> prune xs _T
|
||||||
|
> prune xs (PAIR s t) = (++) <$> prune xs s <*> prune xs t
|
||||||
|
> prune xs (L b) = prune xs . snd =<< unbind b
|
||||||
|
> prune xs (N (Var z _) es)
|
||||||
|
> | z `elem` xs = throwError "pruning error"
|
||||||
|
> | otherwise = concat <$> mapM pruneElim es
|
||||||
|
> where pruneElim (A a) = prune xs a
|
||||||
|
> pruneElim _ = return []
|
||||||
|
> prune xs (N (Meta beta) es) = do
|
||||||
|
> _T <- lookupMeta beta
|
||||||
|
> maybe [] (\ (_U, f) -> [(beta, _U, f)]) <$>
|
||||||
|
> pruneSpine [] [] xs _T es
|
||||||
|
|
||||||
|
%if False
|
||||||
|
|
||||||
|
> prune _ (C {}) = error "concat <$> mapM (prune xs) ts"
|
||||||
|
|
||||||
|
%endif
|
||||||
|
|
||||||
|
Once a metavariable has been found, |pruneSpine| unfolds its type and
|
||||||
|
inspects its arguments, generating lists of unpruned and pruned
|
||||||
|
arguments (|_Phi| and |_Psi|). If an argument contains a rigid
|
||||||
|
occurrence of a forbidden variable, or its type rigidly depends on a
|
||||||
|
previously removed argument, then it is removed. Ultimately, it
|
||||||
|
generates a simplified type for the metavariable if the codomain type
|
||||||
|
does not depend on a pruned argument.
|
||||||
|
|
||||||
|
> pruneSpine :: [(Nom, Type)] -> [(Nom, Type)] ->
|
||||||
|
> [Nom] -> Type -> [Elim] ->
|
||||||
|
> Contextual (Maybe (Type, VAL -> VAL))
|
||||||
|
> pruneSpine _Phi _Psi xs (PI _A _B) (A a:es)
|
||||||
|
> | not stuck = do
|
||||||
|
> z <- freshNom
|
||||||
|
> let _Psi' = _Psi ++ if pruned then [] else [(z, _A)]
|
||||||
|
> pruneSpine (_Phi ++ [(z, _A)]) _Psi' xs (_B $$ var z) es
|
||||||
|
> | otherwise = return Nothing
|
||||||
|
> where
|
||||||
|
> o = occurrence xs a
|
||||||
|
> o' = occurrence (Set.toList $ vars _Phi Set.\\ vars _Psi) _A
|
||||||
|
> pruned = isRigid o || isRigid o'
|
||||||
|
> stuck = isFlexible o || (isNothing o && isFlexible o')
|
||||||
|
> || (not pruned && not (isVar a))
|
||||||
|
> pruneSpine _Phi _Psi _ _T [] | fvs _T `Set.isSubsetOf` vars _Psi && _Phi /= _Psi =
|
||||||
|
> return $ Just (_Pis _Psi _T, \ v -> lams' _Phi (v $*$ _Psi))
|
||||||
|
> pruneSpine _ _ _ _ _ = return Nothing
|
||||||
|
|
||||||
|
After pruning, we can |instantiate| a pruned metavariable by moving
|
||||||
|
left through the context until we find the relevant metavariable, then
|
||||||
|
creating a new metavariable and solving the old one.
|
||||||
|
|
||||||
|
> instantiate :: (Nom, Type, VAL -> VAL) -> Contextual ()
|
||||||
|
> instantiate d@(alpha, _T, f) = popL >>= \ e -> case e of
|
||||||
|
> E beta _U HOLE | alpha == beta -> hole [] _T $ \ t ->
|
||||||
|
> define [] beta _U (f t)
|
||||||
|
> _ -> pushR (Right e) >>
|
||||||
|
> instantiate d
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Metavariable and problem simplification}
|
||||||
|
\label{subsec:impl:simplification}
|
||||||
|
|
||||||
|
Given a problem, the |solver| simplifies it according to the rules in
|
||||||
|
Figure~\ref{fig:solve}, introduces parameters and calls |unify| from
|
||||||
|
subsection~\ref{subsec:impl:unification}. In particular, it removes
|
||||||
|
$\Sigma$-types from parameters, potentially eliminating projections,
|
||||||
|
and replaces twins whose types are definitionally equal with a normal
|
||||||
|
parameter.
|
||||||
|
|
||||||
|
> solver :: ProbId -> Problem -> Contextual ()
|
||||||
|
> solver n (Unify q) = isReflexive q >>= \ b ->
|
||||||
|
> if b then solved n q
|
||||||
|
> else unify n q `catchError` failed n q
|
||||||
|
> solver n (All p b) = do
|
||||||
|
> (x, q) <- unbind b
|
||||||
|
> case p of
|
||||||
|
> _ | x `notElem` fvs q -> simplify n (All p b) [q]
|
||||||
|
> P _S -> splitSig [] x _S >>= \case
|
||||||
|
> Just (y, _A, z, _B, s, _) ->
|
||||||
|
> solver n (allProb y _A (allProb z _B (subst x s q)))
|
||||||
|
> Nothing -> localParams (++ [(x, P _S)]) $ solver n q
|
||||||
|
> Twins _S _T -> equal SET _S _T >>= \ c ->
|
||||||
|
> if c then solver n (allProb x _S (subst x (var x) q))
|
||||||
|
> else localParams (++ [(x, Twins _S _T)]) $ solver n q
|
||||||
|
>
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
Given the name and type of a metavariable, |lower| attempts to
|
||||||
|
simplify it by removing $\Sigma$-types, according to the metavariable
|
||||||
|
simplification rules in Figure~\ref{fig:solve}. If it cannot be
|
||||||
|
simplified, it appends it to the (left) context.
|
||||||
|
|
||||||
|
> lower :: [(Nom, Type)] -> Nom -> Type -> Contextual ()
|
||||||
|
> lower _Phi alpha (SIG _S _T) = hole _Phi _S $ \ s ->
|
||||||
|
> hole _Phi (_T $$ s) $ \ t ->
|
||||||
|
> define _Phi alpha (SIG _S _T) (PAIR s t)
|
||||||
|
>
|
||||||
|
> lower _Phi alpha (PI _S _T) = do
|
||||||
|
> x <- freshNom
|
||||||
|
> splitSig [] x _S >>= maybe
|
||||||
|
> (lower (_Phi ++ [(x, _S)]) alpha (_T $$ var x))
|
||||||
|
> (\ (y, _A, z, _B, s, (u, v)) ->
|
||||||
|
> hole _Phi (_Pi y _A (_Pi z _B (_T $$ s))) $ \ w ->
|
||||||
|
> define _Phi alpha (PI _S _T) (lam x (w $$ u $$ v)))
|
||||||
|
>
|
||||||
|
> lower _Phi alpha _T = pushL (E alpha (_Pis _Phi _T) HOLE)
|
||||||
|
|
||||||
|
|
||||||
|
Both |solver| and |lower| above need to split $\Sigma$-types (possibly
|
||||||
|
underneath a bunch of parameters) into their components. For example,
|
||||||
|
$[[y : Pi x : X . Sigma S T]]$ splits into $[[y0 : Pi x : X . S]]$ and
|
||||||
|
$[[y1 : Pi x : X . T (y0 x)]]$. Given the name of a variable and its
|
||||||
|
type, |splitSig| attempts to split it, returning fresh variables for
|
||||||
|
the two components of the $\Sigma$-type, an inhabitant of the original
|
||||||
|
type in terms of the new variables and inhabitants of the new types by
|
||||||
|
projecting the original variable.
|
||||||
|
|
||||||
|
> splitSig :: Fresh m => [(Nom, Type)] -> Nom -> Type ->
|
||||||
|
> m (Maybe (Nom, Type, Nom, Type,
|
||||||
|
> VAL, (VAL, VAL)))
|
||||||
|
> splitSig _Phi x (SIG _S _T) = do
|
||||||
|
> y <- freshNom
|
||||||
|
> z <- freshNom
|
||||||
|
> return $ Just (y, _Pis _Phi _S, z, _Pis _Phi (_T $$ var y),
|
||||||
|
> lams' _Phi (PAIR (var y $*$ _Phi) (var z $*$ _Phi)),
|
||||||
|
> (lams' _Phi (var x $*$ _Phi %% Hd),
|
||||||
|
> lams' _Phi (var x $*$ _Phi %% Tl)))
|
||||||
|
> splitSig _Phi x (PI _A _B) = do
|
||||||
|
> a <- freshNom
|
||||||
|
> splitSig (_Phi ++ [(a, _A)]) x (_B $$ var a)
|
||||||
|
> splitSig _ _ _ = return Nothing
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Solvitur ambulando}
|
||||||
|
\label{subsec:impl:ambulando}
|
||||||
|
|
||||||
|
We organise constraint solving via an automaton that lazily propagates
|
||||||
|
a substitution rightwards through the metacontext, making progress on
|
||||||
|
active problems and maintaining the invariant that the entries to the
|
||||||
|
left include no active problems. This is not the only possible
|
||||||
|
strategy: indeed, it is crucial for guaranteeing most general
|
||||||
|
solutions that solving the constraints in any order would produce the
|
||||||
|
same result.
|
||||||
|
|
||||||
|
A problem may be in any of five possible states: |Active| and ready to
|
||||||
|
be worked on; |Blocked| and unable to make progress in its current
|
||||||
|
state; |Pending| the solution of some other problems in order to
|
||||||
|
become solved itself; |Solved| as it has become reflexive; or |Failed|
|
||||||
|
because it is unsolvable. The specification simply removes constraints
|
||||||
|
that are pending or solved, and represents failed constraints as
|
||||||
|
failure of the whole process, but in practice it is often useful to have a
|
||||||
|
more fine-grained representation.
|
||||||
|
|
||||||
|
< data ProblemState = Active | Blocked | Pending [ProbId]
|
||||||
|
< | Solved | Failed String
|
||||||
|
|
||||||
|
In the interests of simplicity, |Blocked| problems do not store any
|
||||||
|
information about when they may be resumed, and applying a
|
||||||
|
substitution that modifies them in any way makes them |Active|. A
|
||||||
|
useful optimisation would be to track the conditions under which they
|
||||||
|
should become active, typically when particular metavariables are
|
||||||
|
solved or types become definitionally equal.
|
||||||
|
|
||||||
|
|
||||||
|
The |ambulando| automaton carries a list of problems that have been
|
||||||
|
solved, for updating the state of subsequent problems, and a
|
||||||
|
substitution with definitions for metavariables.
|
||||||
|
|
||||||
|
> ambulando :: [ProbId] -> Subs -> Contextual ()
|
||||||
|
> ambulando ns theta = popR >>= \case
|
||||||
|
> -- if right context is empty, stop
|
||||||
|
> Nothing -> return ()
|
||||||
|
> -- compose suspended substitutions
|
||||||
|
> Just (Left theta') -> ambulando ns (compSubs theta theta')
|
||||||
|
> -- process entries
|
||||||
|
> Just (Right e) -> case update ns theta e of
|
||||||
|
> Prob n p Active -> pushR (Left theta) >>
|
||||||
|
> solver n p >>
|
||||||
|
> ambulando ns []
|
||||||
|
> Prob n p Solved -> pushL (Prob n p Solved) >>
|
||||||
|
> ambulando (n:ns) theta
|
||||||
|
> E alpha _T HOLE -> lower [] alpha _T >>
|
||||||
|
> ambulando ns theta
|
||||||
|
> e' -> pushL e' >>
|
||||||
|
> ambulando ns theta
|
||||||
|
|
||||||
|
Given a list of solved problems, a substitution and an entry, |update|
|
||||||
|
returns a modified entry with the substitution applied and the problem
|
||||||
|
state changed if appropriate.
|
||||||
|
|
||||||
|
> update :: [ProbId] -> Subs -> Entry -> Entry
|
||||||
|
> update _ theta (Prob n p Blocked) = Prob n p' k
|
||||||
|
> where p' = substs theta p
|
||||||
|
> k = if p `aeq` p' then Blocked else Active
|
||||||
|
> update ns theta (Prob n p (Pending ys))
|
||||||
|
> | null rs = Prob n p' Solved
|
||||||
|
> | otherwise = Prob n p' (Pending rs)
|
||||||
|
> where rs = ys \\ ns
|
||||||
|
> p' = substs theta p
|
||||||
|
> update _ _ e'@(Prob _ _ Solved) = e'
|
||||||
|
> update _ _ e'@(Prob _ _ (Failed _)) = e'
|
||||||
|
> update _ theta e' = substs theta e'
|
42
patuni.cabal
Normal file
42
patuni.cabal
Normal file
|
@ -0,0 +1,42 @@
|
||||||
|
cabal-version: 3.0
|
||||||
|
name: patuni
|
||||||
|
version: 1.0
|
||||||
|
|
||||||
|
synopsis: A tutorial implementation of dynamic pattern unification
|
||||||
|
description:
|
||||||
|
The code from /A tutorial implementation of dynamic pattern unification/
|
||||||
|
by Adam Gundry and Conor McBride, updated to work with GHC 9.2 and up,
|
||||||
|
@unbound-generics@ instead of @unbound@, and without SHE.
|
||||||
|
|
||||||
|
license: BSD-3-Clause
|
||||||
|
license-file: LICENSE
|
||||||
|
author: Adam Gundry, Conor McBride
|
||||||
|
maintainer: rhiannon morris <rhi@rhiannon.website>
|
||||||
|
build-type: Simple
|
||||||
|
|
||||||
|
extra-doc-files: CHANGELOG.md
|
||||||
|
|
||||||
|
tested-with:
|
||||||
|
GHC == 9.2.7,
|
||||||
|
GHC == 9.4.7,
|
||||||
|
GHC == 9.6.4,
|
||||||
|
GHC == 9.8.2,
|
||||||
|
GHC == 9.10.1
|
||||||
|
|
||||||
|
library
|
||||||
|
ghc-options: -Wall
|
||||||
|
|
||||||
|
hs-source-dirs: .
|
||||||
|
exposed-modules: Check, Context, Kit, Tm, Unify, Test
|
||||||
|
|
||||||
|
default-language: GHC2021
|
||||||
|
default-extensions:
|
||||||
|
DeriveAnyClass, DerivingStrategies, GADTs, LambdaCase,
|
||||||
|
PatternSynonyms, UndecidableInstances
|
||||||
|
|
||||||
|
build-depends:
|
||||||
|
base >= 4.16.4.0 && < 4.21,
|
||||||
|
containers ^>= 0.6.7,
|
||||||
|
mtl ^>= 2.2.2,
|
||||||
|
pretty ^>= 1.1.3,
|
||||||
|
unbound-generics ^>= 0.4.4
|
Loading…
Add table
Reference in a new issue