patuni/Test.lhs
2024-06-23 18:03:32 +02:00

716 lines
24 KiB
Text

This module defines test cases for the unification algorithm, divided
into those which must succeed, those which should block (possibly
succeeding partially), and those which must fail.
> module Test where
> import Unbound.Generics.LocallyNameless
> import Kit
> import Tm
> import Unify
> import Context
> import Check
The |test| function executes the constraint solving algorithm on the
given metacontext.
> test :: [Entry] -> IO ()
> test = runTest (const True)
Allocate a fresh name so the counter starts from 1, to avoid clashing
with s2n (which generates names with index 0):
> initialise :: Contextual ()
> initialise = (fresh (s2n "init") :: Contextual (Name VAL)) >> return ()
> runTest :: (ProblemState -> Bool) -> [Entry] -> IO ()
> runTest q es = do putStrLn $ "Initial context:\n" ++
> render (runPretty (prettyEntries es))
> let r = runContextual (B0, map Right es)
> (initialise >> ambulando [] [] >> validate q)
> case r of
> Left err -> putStrLn $ "Error: " ++ err
> Right ((), cx) -> putStrLn $ "Final context:\n" ++ pp cx ++ "\n"
> runTestSolved, runTestStuck, runTestFailed :: IO ()
> runTestSolved = mapM_ (runTest (== Solved)) tests
> runTestStuck = mapM_ (runTest (not . isFailed)) stucks
> runTestFailed = mapM_ (runTest isFailed) fails
> isFailed :: ProblemState -> Bool
> isFailed (Failed _) = True
> isFailed _ = False
> lifted :: Nom -> Type -> [Entry] -> [Entry]
> lifted x _T es = lift [] es
> where
> lift :: Subs -> [Entry] -> [Entry]
> lift g (E a _A d : as) = E a (_Pi x _T (substs g _A)) d :
> lift ((a, meta a $$ var x) : g) as
> lift g (Prob a p s : as) = Prob a (allProb x _T (substs g p)) s : lift g as
> lift _ [] = []
> boy :: String -> Type -> [Entry] -> [Entry]
> boy = lifted . s2n
> gal :: String -> Type -> Entry
> gal x _T = E (s2n x) _T HOLE
> eq :: String -> Type -> VAL -> Type -> VAL -> Entry
> eq x _S s _T t = Prob (ProbId (s2n x)) (Unify (EQN _S s _T t)) Active
> tests, stucks, fails :: [[Entry]]
> tests = [
> -- test 0: solve B with A
> ( gal "A" SET
> : gal "B" SET
> : eq "p" SET (mv "A") SET (mv "B")
> : [])
> -- test 1: solve B with \ _ . A
> , ( gal "A" SET
> : gal "B" (mv "A" --> SET)
> : boy "x" (mv "A")
> ( eq "p" SET (mv "A") SET (mv "B" $$ vv "x")
> : [])
> )
> -- test 2: restrict B to second argument
> , ( gal "A" SET
> : boy "x" (mv "A")
> ( boy "y" (mv "A")
> ( gal "B" (mv "A" --> mv "A" --> SET)
> : eq "p" SET (mv "B" $$$ [vv "y", vv "x"])
> SET (mv "B" $$$ [vv "x", vv "x"])
> : [])
> )
> )
> -- test 3: X unchanged
> , [ gal "X" (_PI "A" SET (vv "A" --> SET))
> , eq "p" SET (mv "X" $$$ [SET, SET])
> SET (mv "X" $$$ [SET, SET])
> ]
> -- test 4: solve A with SET
> , [ gal "A" SET
> , eq "p" SET (mv "A") SET SET
> ]
> -- test 5: solve A with B -> B
> , [ gal "A" SET
> , gal "B" SET
> , gal "C" SET
> , eq "p" SET (mv "A") SET (mv "B" --> mv "B")
> ]
> -- test 6: solve A with \ X . B -> X
> , ( gal "A" (SET --> SET)
> : gal "B" SET
> : boy "X" SET
> ( eq "p" SET (mv "A" $$ vv "X") SET (mv "B" --> vv "X")
> : [])
> )
> -- test 7: solve A with \ _ X _ . B X -> X
> , ( gal "A" (SET --> SET --> SET --> SET)
> : gal "B" (SET --> SET)
> : boy "X" SET
> ( boy "Y" SET
> (eq "p" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
> SET (mv "B" $$ vv "X" --> vv "X")
> : [])
> )
> )
> -- test 8: solve S with A and T with B
> , [ gal "A" SET
> , gal "S" SET
> , gal "B" (mv "A" --> SET)
> , gal "T" (mv "S" --> SET)
> , eq "p" SET (PI (mv "A") (mv "B"))
> SET (PI (mv "S") (mv "T"))
> ]
> -- test 9: solve M with \ y . y
> , [ gal "M" (SET --> SET)
> , eq "p" (SET --> SET) (ll "y" (vv "y"))
> (SET --> SET) (ll "y" (mv "M" $$ vv "y"))
> ]
> -- test 10: solve A with \ _ X _ . X -> X and B with \ X _ _ . X
> , ( gal "A" (SET --> SET --> SET --> SET)
> : boy "X" SET
> ( boy "Y" SET
> ( gal "B" (SET --> SET)
> : eq "q" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
> SET (mv "B" $$ vv "Y" --> vv "X")
> : eq "p" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
> SET (vv "X" --> vv "X")
> : [])
> )
> )
> -- test 11: solve A with \ _ y . y
> , [ gal "A" (_PI "X" SET (vv "X" --> vv "X"))
> , eq "p" (_PI "X" SET (vv "X" --> vv "X")) (ll "X" (ll "y" (vv "y")))
> (_PI "X" SET (vv "X" --> vv "X")) (ll "X" (mv "A" $$ vv "X"))
> ]
> -- test 12: solve f with \ _ y . y after lifting type
> , ( gal "f" (_PI "Y" SET (vv "Y" --> vv "Y"))
> : boy "X" SET
> ( eq "p" (vv "X" --> vv "X") (ll "y" (vv "y"))
> (vv "X" --> vv "X") (mv "f" $$ vv "X")
> : [])
> )
> -- test 13: intersection with nonlinearity, restrict F to first two args
> , ( gal "F" (SET --> SET --> SET --> SET)
> : boy "X" SET
> ( boy "Y" SET
> ( eq "p" SET (mv "F" $$$ [vv "X", vv "X", vv "Y"])
> SET (mv "F" $$$ [vv "X", vv "X", vv "X"])
> : [])
> )
> )
> -- test 14: heterogeneous equality; solve A and B with SET
> , [ gal "A" SET
> , gal "B" SET
> , eq "p" (mv "A" --> SET) (ll "a" SET)
> (mv "B" --> SET) (ll "b" (mv "B"))
> , eq "q" SET (mv "A") SET (mv "B")
> ]
> -- test 15: sigma metavariable; solve A with ((?, Set), ?)
> , [ gal "A" (_SIG "X" (SET *: SET) (vv "X" %% Tl))
> , eq "p" SET SET SET (mv "A" %% Hd %% Tl)
> ]
> -- test 16: sigma variable; solve A with \ X Y . X * Y
> , ( gal "A" (SET --> SET --> SET)
> : boy "B" (_SIG "X" SET (vv "X" *: SET))
> ( eq "p" SET (mv "A" $$ (vv "B" %% Hd) $$ (vv "B" %% Tl %% Tl))
> SET ((vv "B" %% Hd) *: (vv "B" %% Tl %% Tl))
> : [])
> )
> -- test 17: sigma variable; restrict A to \ _ X . ?A' X
> , ( gal "A" (SET --> SET --> SET)
> : boy "B" (_SIG "X" SET (vv "X" *: SET))
> ( eq "p" SET (mv "A" $$$ [vv "B" %% Hd, vv "B" %% Tl %% Tl])
> SET (mv "A" $$$ [vv "B" %% Tl %% Tl, vv "B" %% Tl %% Tl])
> : [])
> )
> -- test 18: sigma variable; solve B with \ X z . ?A X (z -)
> , ( gal "A" (SET --> SET --> SET)
> : gal "B" (_PI "X" SET (vv "X" *: SET --> SET))
> : boy "C" (_SIG "X" SET (vv "X" *: SET))
> ( eq "p" SET (mv "A" $$$ [vv "C" %% Hd, vv "C" %% Tl %% Tl])
> SET (mv "B" $$$ [vv "C" %% Hd, vv "C" %% Tl])
> : [])
> )
> -- test 19: sigma metavariable and equation; solve A
> , [ gal "A" (_SIG "X" SET (vv "X"))
> , eq "p" (_SIG "X" SET (vv "X" *: SET))
> (PAIR (mv "A" %% Hd) (PAIR (mv "A" %% Tl) (SET --> SET)))
> (_SIG "X" SET (vv "X" *: SET))
> (PAIR (SET --> SET) (PAIR (ll "z" (vv "z")) (mv "A" %% Hd)))
> ]
> -- test 20: solve A with X ! and a with X -
> , ( boy "X" (_SIG "Y" SET (vv "Y"))
> ( gal "A" SET
> : gal "a" (mv "A")
> : eq "p" (_SIG "Y" SET (vv "Y")) (vv "X")
> (_SIG "Y" SET (vv "Y")) (PAIR (mv "A") (mv "a"))
> : [])
> )
> -- test 21: solve A with f
> , ( boy "f" (SET --> SET)
> ( gal "A" (SET --> SET)
> : eq "p" (SET --> SET) (vv "f")
> (SET --> SET) (ll "x" (mv "A" $$ vv "x"))
> : [])
> )
> -- test 22: solve A with SET
> , ( boy "X" ((SET --> SET) *: SET)
> ( gal "A" SET
> : eq "p" SET (vv "X" %% Hd $$ SET) SET (vv "X" %% Hd $$ mv "A")
> : [])
> )
> -- test 23: solve SS with [S', S']
> , ( gal "SS" (SET *: SET)
> : boy "f" (SET --> SET --> SET)
> ( eq "p" SET (vv "f" $$$ [mv "SS" %% Tl, mv "SS" %% Hd])
> SET (vv "f" $$$ [mv "SS" %% Hd, mv "SS" %% Tl])
> : [])
> )
> -- test 24: solve A with SET
> , [ gal "A" SET
> , eq "p" (mv "A" --> SET) (ll "a" (mv "A"))
> (SET --> SET) (ll "a" SET)
> ]
> -- test 25: solve with extensionality and refl
> , [ gal "A" SET
> , eq "p" (mv "A" --> SET) (ll "x" SET)
> (SET --> SET) (ll "x" SET)
> ]
> -- test 26: solve A with \ _ Y . Y
> , ( gal "A" (SET --> SET --> SET)
> : boy "X" SET
> ( eq "p" (mv "A" $$ vv "X" $$ vv "X" --> SET)
> (ll "Y" (mv "A" $$ vv "X" $$ vv "Y"))
> (vv "X" --> SET)
> (ll "Y" (vv "X"))
> : [])
> )
> -- test 27: solve A with SET
> , [ gal "A" SET
> , eq "p" SET (_PI "X" (SET --> SET) (vv "X" $$ mv "A"))
> SET (_PI "X" (SET --> SET) (vv "X" $$ SET))
> ]
> -- test 28: prune and solve A with \ _ . B -> B
> , ( gal "A" (SET --> SET)
> : boy "x" (_SIG "Y" SET (vv "Y"))
> ( gal "B" SET
> : eq "p" SET (mv "A" $$ (vv "x" %% Hd))
> SET (mv "B" --> mv "B")
> : [])
> )
> -- test 29: prune A and solve B with A
> , ( gal "A" (SET --> SET)
> : gal "B" SET
> : eq "p" (SET --> SET) (ll "X" (mv "A" $$ (vv "X" --> vv "X")))
> (SET --> SET) (ll "X" (mv "B"))
> : [])
> -- test 30: prune A and solve B with A
> , ( gal "B" SET
> : gal "A" (SET --> SET)
> : eq "p" (SET --> SET) (ll "X" (mv "A" $$ (vv "X" --> vv "X")))
> (SET --> SET) (ll "X" (mv "B"))
> : [])
> -- test 31: solve A with SET and f with \ x . x
> , ( gal "A" SET
> : gal "f" (mv "A" --> SET)
> : eq "p" (mv "A" --> SET) (mv "f")
> (mv "A" --> mv "A") (ll "x" (vv "x"))
> : eq "q" SET (mv "A" --> SET) SET (mv "A" --> mv "A")
> : [])
> -- test 32: prune B and solve A with B -> B
> , ( gal "A" SET
> : gal "B" (SET --> SET)
> : eq "p" (SET --> SET) (ll "Y" (mv "A"))
> (SET --> SET) (ll "X" ((mv "B" $$ mv "A") -->
> (mv "B" $$ vv "X")))
> : [])
> -- test 33: eta-contract pi
> , ( gal "A" ((SET --> SET) --> SET)
> : boy "f" (SET --> SET)
> ( eq "p" SET (mv "A" $$ (ll "y" (vv "f" $$ vv "y")))
> SET (vv "f" $$ SET)
> : [])
> )
> -- test 34: eta-contract sigma
> , ( gal "A" (SET *: SET --> SET)
> : boy "b" (SET *: SET)
> ( eq "p" SET (mv "A" $$ (PAIR (vv "b" %% Hd) (vv "b" %% Tl)))
> SET (vv "b" %% Hd)
> : [])
> )
> -- test 35: eta-contract pi and sigma
> , ( gal "A" ((SET *: SET --> SET) --> SET)
> : boy "f" (SET *: SET --> SET)
> ( eq "p" SET (mv "A" $$ (ll "b" (vv "f" $$ PAIR (vv "b" %% Hd) (vv "b" %% Tl))))
> SET (vv "f" $$ PAIR SET SET)
> : [])
> )
> -- test 36: A/P Flattening Sigma-types
> , ( gal "u" ((SET --> SET *: SET) --> SET)
> : boy "z1" (SET --> SET)
> ( boy "z2" (SET --> SET)
> ( eq "p" SET (mv "u" $$ (ll "x" (PAIR (vv "z1" $$ vv "x") (vv "z2" $$ vv "x"))))
> SET SET
> : [])
> )
> )
> -- test 37: A/P Eliminating projections
> , ( gal "u" ((SET --> SET) --> SET)
> : boy "y" (SET --> SET *: SET)
> ( eq "p" SET (mv "u" $$ (ll "x" (vv "y" $$ vv "x" %% Hd)))
> SET (vv "y" $$ SET %% Hd)
> : [])
> )
> -- test 38: prune A and solve B with A
> , ( gal "B" SET
> : gal "A" (SET --> SET)
> : eq "p" (SET --> SET) (ll "X" (mv "B"))
> (SET --> SET) (ll "X" (mv "A" $$ (vv "X" --> vv "X")))
>
> : [])
> -- test 39: solve u with \ _ x . x
> , ( gal "u" (_PI "v" (_SIG "S" SET (vv "S" *: (vv "S" --> SET))) ((vv "v" %% Tl %% Tl $$ (vv "v" %% Tl %% Hd)) --> (vv "v" %% Tl %% Tl $$ (vv "v" %% Tl %% Hd))))
> : boy "A" SET
> ( boy "a" (vv "A")
> ( boy "f" (vv "A" --> SET)
> ( eq "p" ((vv "f" $$ vv "a") --> (vv "f" $$ vv "a")) (mv "u" $$ PAIR (vv "A") (PAIR (vv "a") (vv "f")))
> ((vv "f" $$ vv "a") --> (vv "f" $$ vv "a")) (ll "x" (vv "x"))
> : [])
> )
> )
> )
> -- test 40: restrict A to second argument
> , ( gal "A" (SET --> SET --> SET)
> : boy "X" SET
> ( boy "Y" SET
> ( eq "p" (SET --> SET) (mv "A" $$ vv "X")
> (SET --> SET) (ll "Z" (mv "A" $$ vv "Y" $$ vv "Z"))
> : [])
> )
> )
> -- test 41: solve A with [ SET , SET ]
> , ( gal "A" (SET *: SET)
> : eq "p" (SET *: SET) (mv "A")
> (SET *: SET) (PAIR (mv "A" %% Tl) SET)
> : [])
> -- test 42
> , ( gal "T" (SET --> SET)
> : gal "A" (_PI "Y" SET (mv "T" $$ vv "Y" --> SET))
> : gal "B" SET
> : boy "X" SET
> ( boy "t" (mv "T" $$ vv "X")
> ( eq "p" SET (mv "B") SET (mv "A" $$ vv "X" $$ vv "t" --> SET)
> : [])
> )
> )
> -- test 43
> , ( gal "A" (SET --> SET)
> : gal "F" (SET --> SET)
> : gal "B" SET
> : boy "X" SET
> ( eq "p" SET (mv "B")
> SET (mv "A" $$ (mv "F" $$ vv "X") --> mv "A" $$ vv "X")
> : [])
> )
> -- test 44: false occurrence
> , ( gal "A" SET
> : gal "B" SET
> : gal "C" SET
> : eq "p" (mv "C" --> SET) (lamK (mv "B"))
> (mv "C" --> SET) (lamK (mv "A"))
> : [])
> -- test 45
> , ( gal "A" SET
> : gal "B" (mv "A" --> SET)
> : gal "C" (mv "A" --> SET)
> : boy "x" (mv "A")
> ( boy "y" (mv "A")
> ( eq "p" SET (mv "B" $$ vv "x")
> SET (mv "C" $$ vv "x")
> : [])
> )
> )
> -- test 46: prune p to learn B doesn't depend on its argument
> , ( gal "A" (SET --> SET)
> : boy "Z" SET
> ( gal "B" (SET --> SET)
> : gal "C" SET
> : boy "X" SET
> ( boy "Y" SET
> ( eq "p" SET (mv "A" $$ (mv "B" $$ mv "C"))
> SET (mv "B" $$ vv "Y")
> : eq "q" SET (mv "B" $$ mv "C") SET (vv "Z")
> : [])
> )
> )
> )
> -- test 47
> , ( gal "A" (_PI "X" SET (vv "X" --> SET))
> : gal "B" SET
> : boy "Y" SET
> ( boy "y" (vv "Y")
> ( eq "p" SET (mv "B")
> SET (mv "A" $$ vv "Y" $$ vv "y")
> : [])
> )
> )
> -- test 48
> , ( gal "A" (SET --> SET)
> : gal "B" SET
> : eq "p" SET (mv "B")
> SET (_PI "X" SET (mv "A" $$ vv "X"))
>
> : [])
> -- test 49: don't prune A too much
> , ( gal "F" (SET --> SET --> SET)
> : gal "A" (_PI "X" SET (mv "F" $$ SET $$ vv "X" --> SET))
> : gal "B" (SET --> SET)
> : boy "Y" SET
> ( eq "p" (SET --> SET) (mv "B")
> (mv "F" $$ SET $$ vv "Y" --> SET) (mv "A" $$ vv "Y")
> : boy "y" (mv "F" $$ SET $$ vv "Y")
> ( eq "q" SET (mv "F" $$ vv "Y" $$ vv "Y") SET SET
> : eq "r" SET (mv "A" $$ vv "Y" $$ vv "y")
> (mv "F" $$ SET $$ vv "Y") (vv "y")
> : [])
> )
> )
> -- test 50: Miller's nasty non-pruning example
> , ( boy "a" SET
> ( gal "X" ((SET --> SET) --> SET --> SET)
> : boy "y" SET
> ( eq "p" SET (mv "X" $$ (ll "z" (vv "a")) $$ vv "y")
> SET (vv "a")
> : eq "q" ((SET --> SET) --> SET --> SET) (mv "X")
> ((SET --> SET) --> SET --> SET) (ll "z1" (ll "z2" (vv "z1" $$ vv "z2")))
> : [])
> )
> )
> -- test 51
> , ( gal "A" (_PI "X" SET (_PI "x" (vv "X") SET))
> : gal "B" SET
> : eq "p" SET (mv "B")
> SET (_PI "X" SET (_PI "x" (vv "X") (mv "A" $$ vv "X" $$ vv "x")))
> : [])
> ]
> stucks = [
> -- stuck 0: nonlinear
> ( gal "A" (SET --> SET --> SET --> SET)
> : gal "B" (SET --> SET)
> : boy "X" SET
> ( boy "Y" SET
> ( eq "p" SET (mv "A" $$$ [vv "Y", vv "X", vv "Y"])
> SET (mv "B" $$ vv "Y" --> vv "X")
> : [])
> )
> )
> -- stuck 1: nonlinear
> , ( gal "F" (SET --> SET --> SET)
> : gal "G" (SET --> SET --> SET)
> : boy "X" SET
> ( eq "p" SET (mv "F" $$$ [vv "X", vv "X"])
> SET (mv "G" $$$ [vv "X", vv "X"])
> : [])
> )
> -- stuck 2: nonlinear
> , ( boy "X" SET
> ( gal "f" (vv "X" --> vv "X" --> vv "X")
> : boy "Y" SET
> ( boy "x" (vv "X")
> ( eq "p" (vv "Y" --> vv "X") (ll "y" (mv "f" $$ vv "x" $$ vv "x"))
> (vv "Y" --> vv "X") (ll "y" (vv "x"))
> : [])
> )
> )
> )
> -- stuck 3: nonlinear
> , ( gal "B" (SET --> SET --> SET)
> : boy "X" SET
> ( gal "A" SET
> : eq "p" (mv "A" --> SET) (ll "a" (mv "B" $$ vv "X" $$ vv "X"))
> (mv "A" --> SET) (ll "a" (vv "X"))
> : [])
> )
> -- stuck 4: double meta
> , [ gal "A" (SET --> SET)
> , gal "B" (SET --> SET)
> , gal "D" SET
> , gal "C" SET
> , eq "p" SET (mv "A" $$ (mv "B" $$ mv "C")) SET (mv "D")
> ]
> -- stuck 5: solution does not typecheck
> , ( gal "A" SET
> : gal "f" (mv "A" --> SET)
> : eq "p" (mv "A" --> SET) (mv "f")
> (mv "A" --> mv "A") (ll "x" (vv "x"))
> : [])
> -- stuck 6: weak rigid occurrence should not cause failure
> , ( gal "A" ((SET --> SET) --> SET)
> : boy "f" (SET --> SET)
> ( eq "p" SET (mv "A" $$ vv "f")
> SET (vv "f" $$ (mv "A" $$ (ll "X" (vv "X"))) --> SET)
> : [])
> )
> -- stuck 7: prune second argument of B and get stuck
> , ( gal "A" SET
> : gal "B" (SET --> SET --> SET)
> : boy "X" SET
> ( eq "p" SET (mv "A")
> SET (mv "B" $$ mv "A" $$ vv "X")
> : [])
> )
> -- stuck 8: prune argument of A
> , ( boy "f" (SET --> SET)
> ( gal "A" (SET --> SET)
> : boy "X" SET
> ( boy "Y" SET
> ( eq "p" SET (mv "A" $$ vv "X")
> SET (vv "f" $$ (mv "A" $$ vv "Y"))
> : [])
> )
> )
> )
> -- stuck 9 (requires sigma-splitting of twins)
> , ( gal "A" SET
> : gal "B" (SET --> mv "A" --> SET)
> : gal "S" SET
> : gal "T" (SET --> mv "S" --> SET)
> : eq "p" (SIG (mv "A") (mv "B" $$ SET) --> SET)
> (ll "x" (mv "B" $$ SET $$ (vv "x" %% Hd)))
> (SIG (mv "S") (mv "T" $$ SET) --> SET)
> (ll "x" (mv "T" $$ SET $$ (vv "x" %% Hd)))
> : [])
> -- stuck 10: awkward occurrence (TODO: should this get stuck or fail?)
> , ( gal "A" SET
> : gal "a" (mv "A")
> : gal "f" (mv "A" --> SET)
> : eq "p" SET (mv "A") SET ((mv "f" $$ mv "a") --> SET)
> : [])
> -- stuck 12: twins with matching spines (stuck on B Set == T Set)
> , ( gal "A" SET
> : gal "B" (SET --> mv "A" --> SET)
> : gal "S" SET
> : gal "T" (SET --> mv "S" --> SET)
> : eq "p" (SIG (mv "A") (mv "B" $$ SET) --> mv "A")
> (ll "x" (vv "x" %% Hd))
> (SIG (mv "S") (mv "T" $$ SET) --> mv "S")
> (ll "x" (vv "x" %% Hd))
> : [])
> -- stuck 13
> , ( gal "A" (SET --> SET)
> : gal "B" (SET --> SET)
> : gal "a" (mv "A" $$ SET)
> : gal "b" (mv "B" $$ SET)
> : eq "p" (SIG SET (mv "B")) (PAIR SET (mv "b"))
> (mv "A" $$ SET) (mv "a")
> : eq "q" SET (SIG SET (mv "B")) SET (mv "A" $$ SET)
> : [])
> -- stuck 14 (TODO: should this be solvable by pruning?)
> , ( gal "A" (SET --> SET)
> : gal "B" SET
> : boy "X" SET
> ( eq "p" SET (mv "A" $$ (mv "A" $$ vv "X"))
> SET (mv "B")
> : [])
> )
> -- stuck 15
> , ( gal "F" (SET --> SET)
> : gal "A" (_PI "X" SET (mv "F" $$ vv "X"))
> : boy "X" SET
> ( boy "Y" SET
> ( eq "p" (mv "F" $$ vv "X") (mv "A" $$ vv "X")
> (mv "F" $$ vv "Y") (mv "A" $$ vv "Y")
> : [])
> )
> )
> -- stuck 16
> , ( gal "B" (SET --> SET)
> : gal "F" (mv "B" $$ SET --> SET)
> : eq "p" (mv "B" $$ SET --> SET) (ll "Y" (mv "F" $$ vv "Y"))
> (SET --> SET) (ll "Y" (vv "Y"))
> : [])
> -- test 53: solve C with A despite B being in the way
> , ( gal "A" SET
> : gal "C" SET
> : gal "B" (SET --> SET)
> : gal "F" (mv "B" $$ SET --> SET)
> : eq "p" (_PI "X" (mv "B" $$ SET) ((mv "F" $$ vv "X") --> SET))
> (ll "X" (ll "x" (mv "A")))
> (_PI "X" SET (vv "X" --> SET))
> (ll "X" (ll "x" (mv "C")))
> : [])
> ]
> fails = [
> -- fail 0: occur check failure (A occurs in A -> A)
> [ gal "A" SET
> , eq "p" SET (mv "A") SET (mv "A" --> mv "A")
> ]
> -- fail 1: flex-rigid fails because A cannot depend on X
> , ( gal "A" SET
> : gal "B" SET
> : boy "X" SET
> ( eq "p" SET (mv "A") SET (mv "B" --> vv "X")
> : [])
> )
> -- fail 2: rigid-rigid clash
> , ( boy "X" SET
> ( boy "Y" SET
> ( eq "p" SET (vv "X") SET (vv "Y")
> : [])
> )
> )
> -- fail 3: spine mismatch
> , ( boy "X" (SET *: SET)
> ( eq "p" SET (vv "X" %% Hd) SET (vv "X" %% Tl)
> : [])
> )
> -- fail 4: rigid-rigid constant clash
> , ( eq "p" SET SET SET (SET --> SET)
> : [])
> ]