singleton-typelits/GHC/TypeLits/Induction.hs

116 lines
5 KiB
Haskell

-- |
-- Module : GHC.TypeLits.Induction
-- Description : Induction for GHC TypeLits
-- Copyright : (C) 2017-2018 mniip
-- License : MIT
-- Maintainer : mniip@mniip.com
-- Stability : stable
-- Portability : portable
{-# LANGUAGE TypeOperators, KindSignatures, DataKinds, PolyKinds, GADTs, RankNTypes, StandaloneDeriving, InstanceSigs, ScopedTypeVariables #-}
{-# LANGUAGE Safe #-}
{-# OPTIONS_GHC -fno-warn-tabs #-}
module GHC.TypeLits.Induction
(
-- * Natural number induction
induceIsZero,
inducePeano,
induceTwosComp,
induceBaseComp,
-- * Positive number induction
induceUnary,
inducePosBinary,
inducePosBase
)
where
import Data.Proxy
import GHC.TypeLits
import GHC.TypeLits.Singletons
-- | \((\forall n. n > 0 \to P(n)) \to P(0) \to \forall m. P(m)\)
induceIsZero :: KnownNat m => (forall n. KnownNat n => p (1 + n)) -> p 0 -> p m
induceIsZero = go natSingleton
where
go :: NatIsZero m -> (forall n. KnownNat n => p (1 + n)) -> p 0 -> p m
go IsZero y z = z
go IsNonZero y z = y
-- | \((\forall n. P(n) \to P(n + 1)) \to P(0) \to \forall m. P(m)\)
--
-- For example:
--
-- > inducePeano f z :: p 3 = f (f (f z))
inducePeano :: KnownNat m => (forall n. KnownNat n => p n -> p (1 + n)) -> p 0 -> p m
inducePeano = go natSingleton
where
go :: NatPeano m -> (forall n. KnownNat n => p n -> p (1 + n)) -> p 0 -> p m
go PeanoZero f z = z
go (PeanoSucc n) f z = f (go n f z)
-- | \((\forall n. P(n) \to P(2n + 1)) \to \\ (\forall n. P(n) \to P(2n + 2)) \to \\ P(0) \to \\ \forall m. P(m)\)
--
-- For example:
--
-- > induceTwosComp f1 f2 z :: p 12 = f2 (f1 (f2 z))
induceTwosComp :: KnownNat m => (forall n. KnownNat n => p n -> p (1 + 2 * n)) -> (forall n. KnownNat n => p n -> p (2 + 2 * n)) -> p 0 -> p m
induceTwosComp = go natSingleton
where
go :: NatTwosComp m -> (forall n. KnownNat n => p n -> p (1 + 2 * n)) -> (forall n. KnownNat n => p n -> p (2 + 2 * n)) -> p 0 -> p m
go TwosCompZero f g z = z
go (TwosCompx2p1 n) f g z = f (go n f g z)
go (TwosCompx2p2 n) f g z = g (go n f g z)
-- | \(\forall b. (\prod_d Q(d)) \to \\ (\forall n. \forall d. d < b \to Q(d) \to P(n) \to P(bn + d + 1)) \to \\ \forall m. P(m)\)
--
-- For example:
--
-- > induceBaseComp (_ :: s q) (_ :: r 10) d f z :: p 123 = (d :: q 2) `f` ((d :: q 1) `f` ((d :: q 0) `f` z)
--
-- The @s q@ parameter is necessary because presently GHC is unable to unify @q@ under the equational constraint @1 + k <= b@.
induceBaseComp :: forall r b q p m c s. (KnownNat b, b ~ (1 + c), KnownNat m) => s q -> r b -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (1 + k + b * n)) -> p 0 -> p m
induceBaseComp _ _ = go natSingleton
where
go :: forall m. NatBaseComp Proxy b m -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (1 + k + b * n)) -> p 0 -> p m
go BaseCompZero q f z = z
go (BaseCompxBp1p k n) q f z = f q (go n q f z)
-- | \((\forall n. P(n) \to P(n + 1)) \to P(1) \to \forall m > 0. P(m)\)
--
-- For example:
--
-- > induceUnary f o :: p 5 = f (f (f (f o)))
induceUnary :: KnownNat m => (forall n. KnownNat n => p n -> p (1 + n)) -> p 1 -> p (1 + m)
induceUnary = go posSingleton
where
go :: Unary m -> (forall n. KnownNat n => p n -> p (1 + n)) -> p 1 -> p m
go UnaryOne f o = o
go (UnarySucc n) f o = f (go n f o)
-- | \((\forall n. P(n) \to P(2n)) \to \\ (\forall n. P(n) \to P(2n + 1)) \to \\ P(1) \to \\ \forall m > 0. P(m)\)
--
-- For example:
--
-- > inducePosBinary f0 f1 o :: p 10 = f0 (f1 (f0 o))
inducePosBinary :: KnownNat m => (forall n. KnownNat n => p n -> p (2 * n)) -> (forall n. KnownNat n => p n -> p (1 + 2 * n)) -> p 1 -> p (1 + m)
inducePosBinary = go posSingleton
where
go :: PosBinary m -> (forall n. KnownNat n => p n -> p (2 * n)) -> (forall n. KnownNat n => p n -> p (1 + 2 * n)) -> p 1 -> p m
go BinOne f g z = z
go (Bin0 n) f g z = f (go n f g z)
go (Bin1 n) f g z = g (go n f g z)
-- | \(\forall b. (\prod_d Q(d)) \to \\ (\forall n. \forall d. d < b \to Q(d) \to P(n) \to P(bn + d)) \to \\ (\forall d. d > 0 \to d < b \to Q(d) \to P(d)) \to \\ \forall m > 0. P (m)\)
--
-- For example:
--
-- > inducePosBase (_ :: s q) (_ :: r 10) d f l :: p 123 = (d :: q 3) `f` ((d :: q 2) `f` l (d :: q 1))
--
-- The @s q@ parameter is necessary because presently GHC is unable to unify @q@ under the equational constraint @1 + k <= b@.
inducePosBase :: forall r b q p m c s. (KnownNat b, b ~ (2 + c), KnownNat m) => s q -> r b -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (k + b * n)) -> (forall k n. (KnownNat k, 1 + k <= b, k ~ (1 + n)) => q k -> p k) -> p (1 + m)
inducePosBase _ _ = go posSingleton
where
go :: forall m. PosBase Proxy b m -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (k + b * n)) -> (forall k n. (KnownNat k, 1 + k <= b, k ~ (1 + n)) => q k -> p k) -> p m
go (BaseLead n) q f g = g q
go (BaseDigit k n) q f g = f q (go n q f g)