diff --git a/GHC/TypeLits/Induction.hs b/GHC/TypeLits/Induction.hs index 12cf06c..a05c429 100644 --- a/GHC/TypeLits/Induction.hs +++ b/GHC/TypeLits/Induction.hs @@ -38,6 +38,7 @@ induceIsZero = go natSingleton go IsNonZero y z = y -- | \((\forall n. P(n) \to P(n + 1)) \to P(0) \to \forall m. P(m)\) +-- -- For example: -- -- > inducePeano f z :: p 3 = f (f (f z)) @@ -49,6 +50,7 @@ inducePeano = go natSingleton go (PeanoSucc n) f z = f (go n f z) -- | \((\forall n. P(n) \to P(2n + 1)) \to \\ (\forall n. P(n) \to P(2n + 2)) \to \\ P(0) \to \\ \forall m. P(m)\) +-- -- For example: -- -- > induceTwosComp f1 f2 z :: p 12 = f2 (f1 (f2 z)) @@ -61,17 +63,21 @@ induceTwosComp = go natSingleton go (TwosCompx2p2 n) f g z = g (go n f g z) -- | \(\forall b. (\prod_d Q(d)) \to \\ (\forall n. \forall d. d < b \to Q(d) \to P(n) \to P(bn + d + 1)) \to \\ \forall m. P(m)\) +-- -- For example: -- --- > induceBaseComp (_ :: r 10) d f z :: p 123 = (d :: q 2) `f` ((d :: q 1) `f` ((d :: q 0) `f` z) -induceBaseComp :: forall r b q p m. (KnownNat b, KnownNat m) => r b -> (forall m. KnownNat m => q m) -> (forall k n. (KnownNat b, 1 + k <= b, KnownNat n) => q k -> p n -> p (1 + k + b * n)) -> p 0 -> p m -induceBaseComp _ = go natSingleton +-- > induceBaseComp (_ :: s q) (_ :: r 10) d f z :: p 123 = (d :: q 2) `f` ((d :: q 1) `f` ((d :: q 0) `f` z) +-- +-- The @s q@ parameter is necessary because presently GHC is unable to unify @q@ under the equational constraint @1 + k <= b@. +induceBaseComp :: forall r b q p m c s. (KnownNat b, b ~ (1 + c), KnownNat m) => s q -> r b -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (1 + k + b * n)) -> p 0 -> p m +induceBaseComp _ _ = go natSingleton where - go :: forall m. NatBaseComp Proxy b m -> (forall m. (KnownNat m, 1 + m <= b) => q m) -> (forall k n. (KnownNat b, 1 + k <= b, KnownNat n) => q k -> p n -> p (1 + k + b * n)) -> p 0 -> p m + go :: forall m. NatBaseComp Proxy b m -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (1 + k + b * n)) -> p 0 -> p m go BaseCompZero q f z = z go (BaseCompxBp1p k n) q f z = f q (go n q f z) -- | \((\forall n. P(n) \to P(n + 1)) \to P(1) \to \forall m > 0. P(m)\) +-- -- For example: -- -- > induceUnary f o :: p 5 = f (f (f (f o))) @@ -83,6 +89,7 @@ induceUnary = go posSingleton go (UnarySucc n) f o = f (go n f o) -- | \((\forall n. P(n) \to P(2n)) \to \\ (\forall n. P(n) \to P(2n + 1)) \to \\ P(1) \to \\ \forall m > 0. P(m)\) +-- -- For example: -- -- > inducePosBinary f0 f1 o :: p 10 = f0 (f1 (f0 o)) @@ -95,12 +102,15 @@ inducePosBinary = go posSingleton go (Bin1 n) f g z = g (go n f g z) -- | \(\forall b. (\prod_d Q(d)) \to \\ (\forall n. \forall d. d < b \to Q(d) \to P(n) \to P(bn + d)) \to \\ (\forall d. d > 0 \to d < b \to Q(d) \to P(d)) \to \\ \forall m > 0. P (m)\) +-- -- For example: -- --- > inducePosBase (_ :: r 10) d f l :: p 123 = (d :: q 3) `f` ((d :: q 2) `f` l (d :: q 1)) -inducePosBase :: forall r b q p m. (KnownNat b, KnownNat m) => r b -> (forall m. KnownNat m => q m) -> (forall k n. (KnownNat b, 1 + k <= b, KnownNat n) => q k -> p n -> p (k + b * n)) -> (forall k n. (KnownNat k, 1 + k <= b, k ~ (1 + n)) => q k -> p k) -> p (1 + m) -inducePosBase _ = go posSingleton +-- > inducePosBase (_ :: s q) (_ :: r 10) d f l :: p 123 = (d :: q 3) `f` ((d :: q 2) `f` l (d :: q 1)) +-- +-- The @s q@ parameter is necessary because presently GHC is unable to unify @q@ under the equational constraint @1 + k <= b@. +inducePosBase :: forall r b q p m c s. (KnownNat b, b ~ (2 + c), KnownNat m) => s q -> r b -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (k + b * n)) -> (forall k n. (KnownNat k, 1 + k <= b, k ~ (1 + n)) => q k -> p k) -> p (1 + m) +inducePosBase _ _ = go posSingleton where - go :: forall m. PosBase Proxy b m -> (forall m. KnownNat m => q m) -> (forall k n. (KnownNat b, 1 + k <= b, KnownNat n) => q k -> p n -> p (k + b * n)) -> (forall k n. (KnownNat k, 1 + k <= b, k ~ (1 + n)) => q k -> p k) -> p m + go :: forall m. PosBase Proxy b m -> (forall k. (KnownNat k, 1 + k <= b) => q k) -> (forall k n. (KnownNat k, 1 + k <= b, KnownNat n) => q k -> p n -> p (k + b * n)) -> (forall k n. (KnownNat k, 1 + k <= b, k ~ (1 + n)) => q k -> p k) -> p m go (BaseLead n) q f g = g q go (BaseDigit k n) q f g = f q (go n q f g) diff --git a/GHC/TypeLits/Singletons.hs b/GHC/TypeLits/Singletons.hs index 4d3f64e..e3ec64c 100644 --- a/GHC/TypeLits/Singletons.hs +++ b/GHC/TypeLits/Singletons.hs @@ -106,14 +106,14 @@ instance NatSingleton NatTwosComp where -- -- > BaseCompxBp1p (natSingleton :: p 2) (BaseCompxBp1p (natSingleton :: p 1) (BaseCompxBp1p (natSingleton :: p 0) BaseCompZero)) :: NatBaseComp p 10 123 data NatBaseComp (p :: Nat -> *) (b :: Nat) (n :: Nat) where - BaseCompZero :: NatBaseComp p b 0 - BaseCompxBp1p :: (KnownNat k, 1 + k <= b, KnownNat n) => p k -> NatBaseComp p b n -> NatBaseComp p b (1 + k + b * n) + BaseCompZero :: (KnownNat b, b ~ (1 + c)) => NatBaseComp p b 0 + BaseCompxBp1p :: (KnownNat b, b ~ (1 + c), KnownNat k, 1 + k <= b, KnownNat n) => p k -> NatBaseComp p b n -> NatBaseComp p b (1 + k + b * n) instance ShowN p => Show (NatBaseComp p b n) where showsPrec d BaseCompZero = showString "BaseCompZero" showsPrec d (BaseCompxBp1p a b) = showParen (d > 10) $ showString "BaseCompxBp1p " . showsPrecN 11 a . showString " " . showsPrec 11 b instance ShowN p => ShowN (NatBaseComp p b) where showsPrecN = showsPrec -instance (KnownNat b, NatSingleton p) => NatSingleton (NatBaseComp p b) where +instance (KnownNat b, b ~ (1 + c), NatSingleton p) => NatSingleton (NatBaseComp p b) where natSingleton :: forall n. KnownNat n => NatBaseComp p b n natSingleton = case natVal (Proxy :: Proxy n) of 0 -> (unsafeCoerce :: NatBaseComp p b 0 -> NatBaseComp p b n) BaseCompZero @@ -188,7 +188,7 @@ instance ShowN p => Show (PosBase p b n) where showsPrec d (BaseDigit a b) = showParen (d > 10) $ showString "BaseDigit " . showsPrecN 11 a . showString " " . showsPrec 11 b instance ShowN p => ShowN (PosBase p b) where showsPrecN = showsPrec -instance (KnownNat b, NatSingleton p) => PositiveSingleton (PosBase p b) where +instance (KnownNat b, b ~ (2 + c), NatSingleton p) => PositiveSingleton (PosBase p b) where posSingleton :: forall n. KnownNat n => PosBase p b (1 + n) posSingleton = case natVal (Proxy :: Proxy n) of n | n < base - 1 -> case someNatVal (n + 1) of diff --git a/singleton-typelits.cabal b/singleton-typelits.cabal index 89894ab..da6b48b 100644 --- a/singleton-typelits.cabal +++ b/singleton-typelits.cabal @@ -1,5 +1,5 @@ name: singleton-typelits -version: 0.0.0.1 +version: 0.1.0.0 synopsis: Singletons and induction over GHC TypeLits description: Singletons and induction schemes over 'GHC.TypeLits.Nat'.