rhiannon morris
03c197bd04
- without this, inside the body of `let x = e in …`, the typechecker would forget that `x = e` - now bound variables can reduce, if they have a definition, so RedexTest needs to take the context too
273 lines
11 KiB
Idris
273 lines
11 KiB
Idris
module Quox.Whnf.Main
|
||
|
||
import Quox.Whnf.Interface
|
||
import Quox.Whnf.ComputeElimType
|
||
import Quox.Whnf.TypeCase
|
||
import Quox.Whnf.Coercion
|
||
import Quox.Displace
|
||
import Data.SnocVect
|
||
|
||
%default total
|
||
|
||
|
||
export covering CanWhnf Term Interface.isRedexT
|
||
export covering CanWhnf Elim Interface.isRedexE
|
||
|
||
|
||
covering
|
||
CanWhnf Elim Interface.isRedexE where
|
||
whnf defs ctx sg (F x u loc) with (lookupElim0 x u defs) proof eq
|
||
_ | Just y = whnf defs ctx sg $ setLoc loc $ injElim ctx y
|
||
_ | Nothing = pure $ Element (F x u loc) $ rewrite eq in Ah
|
||
|
||
whnf defs ctx sg (B i loc) with (ctx.tctx !! i) proof eq1
|
||
_ | l with (l.term) proof eq2
|
||
_ | Just y = whnf defs ctx sg $ Ann y l.type loc
|
||
_ | Nothing = pure $ Element (B i loc) $ rewrite eq1 in rewrite eq2 in Ah
|
||
|
||
-- ((λ x ⇒ t) ∷ (π.x : A) → B) s ⇝ t[s∷A/x] ∷ B[s∷A/x]
|
||
whnf defs ctx sg (App f s appLoc) = do
|
||
Element f fnf <- whnf defs ctx sg f
|
||
case nchoose $ isLamHead f of
|
||
Left _ => case f of
|
||
Ann (Lam {body, _}) (Pi {arg, res, _}) floc =>
|
||
let s = Ann s arg s.loc in
|
||
whnf defs ctx sg $ Ann (sub1 body s) (sub1 res s) appLoc
|
||
Coe ty p q val _ => piCoe defs ctx sg ty p q val s appLoc
|
||
Right nlh => pure $ Element (App f s appLoc) $ fnf `orNo` nlh
|
||
|
||
-- case (s, t) ∷ (x : A) × B return p ⇒ C of { (a, b) ⇒ u } ⇝
|
||
-- u[s∷A/a, t∷B[s∷A/x]] ∷ C[(s, t)∷((x : A) × B)/p]
|
||
--
|
||
-- 0 · case e return p ⇒ C of { (a, b) ⇒ u } ⇝
|
||
-- u[fst e/a, snd e/b] ∷ C[e/p]
|
||
whnf defs ctx sg (CasePair pi pair ret body caseLoc) = do
|
||
Element pair pairnf <- whnf defs ctx sg pair
|
||
case nchoose $ isPairHead pair of
|
||
Left _ => case pair of
|
||
Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc =>
|
||
let fst = Ann fst tfst fst.loc
|
||
snd = Ann snd (sub1 tsnd fst) snd.loc
|
||
in
|
||
whnf defs ctx sg $ Ann (subN body [< fst, snd]) (sub1 ret pair) caseLoc
|
||
Coe ty p q val _ => do
|
||
sigCoe defs ctx sg pi ty p q val ret body caseLoc
|
||
Right np =>
|
||
case sg `decEq` SZero of
|
||
Yes Refl =>
|
||
whnf defs ctx SZero $
|
||
Ann (subN body [< Fst pair caseLoc, Snd pair caseLoc])
|
||
(sub1 ret pair)
|
||
caseLoc
|
||
No n0 =>
|
||
pure $ Element (CasePair pi pair ret body caseLoc)
|
||
(pairnf `orNo` np `orNo` notYesNo n0)
|
||
|
||
-- fst ((s, t) ∷ (x : A) × B) ⇝ s ∷ A
|
||
whnf defs ctx sg (Fst pair fstLoc) = do
|
||
Element pair pairnf <- whnf defs ctx sg pair
|
||
case nchoose $ isPairHead pair of
|
||
Left _ => case pair of
|
||
Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc =>
|
||
whnf defs ctx sg $ Ann fst tfst pairLoc
|
||
Coe ty p q val _ => do
|
||
fstCoe defs ctx sg ty p q val fstLoc
|
||
Right np =>
|
||
pure $ Element (Fst pair fstLoc) (pairnf `orNo` np)
|
||
|
||
-- snd ((s, t) ∷ (x : A) × B) ⇝ t ∷ B[(s ∷ A)/x]
|
||
whnf defs ctx sg (Snd pair sndLoc) = do
|
||
Element pair pairnf <- whnf defs ctx sg pair
|
||
case nchoose $ isPairHead pair of
|
||
Left _ => case pair of
|
||
Ann (Pair {fst, snd, _}) (Sig {fst = tfst, snd = tsnd, _}) pairLoc =>
|
||
whnf defs ctx sg $ Ann snd (sub1 tsnd (Ann fst tfst fst.loc)) sndLoc
|
||
Coe ty p q val _ => do
|
||
sndCoe defs ctx sg ty p q val sndLoc
|
||
Right np =>
|
||
pure $ Element (Snd pair sndLoc) (pairnf `orNo` np)
|
||
|
||
-- case 'a ∷ {a,…} return p ⇒ C of { 'a ⇒ u } ⇝
|
||
-- u ∷ C['a∷{a,…}/p]
|
||
whnf defs ctx sg (CaseEnum pi tag ret arms caseLoc) = do
|
||
Element tag tagnf <- whnf defs ctx sg tag
|
||
case nchoose $ isTagHead tag of
|
||
Left _ => case tag of
|
||
Ann (Tag t _) (Enum ts _) _ =>
|
||
let ty = sub1 ret tag in
|
||
case lookup t arms of
|
||
Just arm => whnf defs ctx sg $ Ann arm ty arm.loc
|
||
Nothing => throw $ MissingEnumArm caseLoc t (keys arms)
|
||
Coe ty p q val _ =>
|
||
-- there is nowhere an equality can be hiding inside an enum type
|
||
whnf defs ctx sg $
|
||
CaseEnum pi (Ann val (dsub1 ty q) val.loc) ret arms caseLoc
|
||
Right nt =>
|
||
pure $ Element (CaseEnum pi tag ret arms caseLoc) $ tagnf `orNo` nt
|
||
|
||
-- case zero ∷ ℕ return p ⇒ C of { zero ⇒ u; … } ⇝
|
||
-- u ∷ C[zero∷ℕ/p]
|
||
--
|
||
-- case succ n ∷ ℕ return p ⇒ C of { succ n', π.ih ⇒ u; … } ⇝
|
||
-- u[n∷ℕ/n', (case n ∷ ℕ ⋯)/ih] ∷ C[succ n ∷ ℕ/p]
|
||
whnf defs ctx sg (CaseNat pi piIH nat ret zer suc caseLoc) = do
|
||
Element nat natnf <- whnf defs ctx sg nat
|
||
case nchoose $ isNatHead nat of
|
||
Left _ =>
|
||
let ty = sub1 ret nat in
|
||
case nat of
|
||
Ann (Nat 0 _) (NAT _) _ =>
|
||
whnf defs ctx sg $ Ann zer ty zer.loc
|
||
Ann (Nat (S n) succLoc) (NAT natLoc) _ =>
|
||
let nn = Ann (Nat n succLoc) (NAT natLoc) succLoc
|
||
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc caseLoc]
|
||
in
|
||
whnf defs ctx sg $ Ann tm ty caseLoc
|
||
Ann (Succ n succLoc) (NAT natLoc) _ =>
|
||
let nn = Ann n (NAT natLoc) succLoc
|
||
tm = subN suc [< nn, CaseNat pi piIH nn ret zer suc caseLoc]
|
||
in
|
||
whnf defs ctx sg $ Ann tm ty caseLoc
|
||
Coe ty p q val _ =>
|
||
-- same deal as Enum
|
||
whnf defs ctx sg $
|
||
CaseNat pi piIH (Ann val (dsub1 ty q) val.loc) ret zer suc caseLoc
|
||
Right nn => pure $
|
||
Element (CaseNat pi piIH nat ret zer suc caseLoc) (natnf `orNo` nn)
|
||
|
||
-- case [t] ∷ [π.A] return p ⇒ C of { [x] ⇒ u } ⇝
|
||
-- u[t∷A/x] ∷ C[[t] ∷ [π.A]/p]
|
||
whnf defs ctx sg (CaseBox pi box ret body caseLoc) = do
|
||
Element box boxnf <- whnf defs ctx sg box
|
||
case nchoose $ isBoxHead box of
|
||
Left _ => case box of
|
||
Ann (Box val boxLoc) (BOX q bty tyLoc) _ =>
|
||
let ty = sub1 ret box in
|
||
whnf defs ctx sg $ Ann (sub1 body (Ann val bty val.loc)) ty caseLoc
|
||
Coe ty p q val _ =>
|
||
boxCoe defs ctx sg pi ty p q val ret body caseLoc
|
||
Right nb =>
|
||
pure $ Element (CaseBox pi box ret body caseLoc) (boxnf `orNo` nb)
|
||
|
||
-- e : Eq (𝑗 ⇒ A) t u ⊢ e @0 ⇝ t ∷ A‹0/𝑗›
|
||
-- e : Eq (𝑗 ⇒ A) t u ⊢ e @1 ⇝ u ∷ A‹1/𝑗›
|
||
--
|
||
-- ((δ 𝑖 ⇒ s) ∷ Eq (𝑗 ⇒ A) t u) @𝑘 ⇝ s‹𝑘/𝑖› ∷ A‹𝑘/𝑗›
|
||
whnf defs ctx sg (DApp f p appLoc) = do
|
||
Element f fnf <- whnf defs ctx sg f
|
||
case nchoose $ isDLamHead f of
|
||
Left _ => case f of
|
||
Ann (DLam {body, _}) (Eq {ty, l, r, _}) _ =>
|
||
whnf defs ctx sg $
|
||
Ann (endsOr (setLoc appLoc l) (setLoc appLoc r) (dsub1 body p) p)
|
||
(dsub1 ty p) appLoc
|
||
Coe ty p' q' val _ =>
|
||
eqCoe defs ctx sg ty p' q' val p appLoc
|
||
Right ndlh => case p of
|
||
K e _ => do
|
||
Eq {l, r, ty, _} <- computeWhnfElimType0 defs ctx sg f
|
||
| ty => throw $ ExpectedEq ty.loc ctx.names ty
|
||
whnf defs ctx sg $
|
||
ends (Ann (setLoc appLoc l) ty.zero appLoc)
|
||
(Ann (setLoc appLoc r) ty.one appLoc) e
|
||
B {} => pure $ Element (DApp f p appLoc) (fnf `orNo` ndlh `orNo` Ah)
|
||
|
||
-- e ∷ A ⇝ e
|
||
whnf defs ctx sg (Ann s a annLoc) = do
|
||
Element s snf <- whnf defs ctx sg s
|
||
case nchoose $ isE s of
|
||
Left _ => let E e = s in pure $ Element e $ noOr2 snf
|
||
Right ne => do
|
||
Element a anf <- whnf defs ctx SZero a
|
||
pure $ Element (Ann s a annLoc) (ne `orNo` snf `orNo` anf)
|
||
|
||
whnf defs ctx sg (Coe sty p q val coeLoc) =
|
||
-- 𝑖 ∉ fv(A)
|
||
-- -------------------------------
|
||
-- coe (𝑖 ⇒ A) @p @q s ⇝ s ∷ A
|
||
--
|
||
-- [fixme] needs a real equality check between A‹0/𝑖› and A‹1/𝑖›
|
||
case dsqueeze sty {f = Term} of
|
||
([< i], Left ty) =>
|
||
case p `decEqv` q of
|
||
-- coe (𝑖 ⇒ A) @p @p s ⇝ (s ∷ A‹p/𝑖›)
|
||
Yes _ => whnf defs ctx sg $ Ann val (dsub1 sty p) coeLoc
|
||
No npq => do
|
||
Element ty tynf <- whnf defs (extendDim i ctx) SZero ty
|
||
case nchoose $ canPushCoe sg ty val of
|
||
Left pc => pushCoe defs ctx sg i ty p q val coeLoc
|
||
Right npc => pure $ Element (Coe (SY [< i] ty) p q val coeLoc)
|
||
(tynf `orNo` npc `orNo` notYesNo npq)
|
||
(_, Right ty) =>
|
||
whnf defs ctx sg $ Ann val ty coeLoc
|
||
|
||
whnf defs ctx sg (Comp ty p q val r zero one compLoc) =
|
||
case p `decEqv` q of
|
||
-- comp [A] @p @p s @r { ⋯ } ⇝ s ∷ A
|
||
Yes y => whnf defs ctx sg $ Ann val ty compLoc
|
||
No npq => case r of
|
||
-- comp [A] @p @q s @0 { 0 𝑗 ⇒ t₀; ⋯ } ⇝ t₀‹q/𝑗› ∷ A
|
||
K Zero _ => whnf defs ctx sg $ Ann (dsub1 zero q) ty compLoc
|
||
-- comp [A] @p @q s @1 { 1 𝑗 ⇒ t₁; ⋯ } ⇝ t₁‹q/𝑗› ∷ A
|
||
K One _ => whnf defs ctx sg $ Ann (dsub1 one q) ty compLoc
|
||
B {} => pure $ Element (Comp ty p q val r zero one compLoc)
|
||
(notYesNo npq `orNo` Ah)
|
||
|
||
whnf defs ctx sg (TypeCase ty ret arms def tcLoc) =
|
||
case sg `decEq` SZero of
|
||
Yes Refl => do
|
||
Element ty tynf <- whnf defs ctx SZero ty
|
||
Element ret retnf <- whnf defs ctx SZero ret
|
||
case nchoose $ isAnnTyCon ty of
|
||
Left y => let Ann ty (TYPE u _) _ = ty in
|
||
reduceTypeCase defs ctx ty u ret arms def tcLoc
|
||
Right nt => pure $ Element (TypeCase ty ret arms def tcLoc)
|
||
(tynf `orNo` retnf `orNo` nt)
|
||
No _ =>
|
||
throw $ ClashQ tcLoc sg.qty Zero
|
||
|
||
whnf defs ctx sg (CloE (Sub el th)) =
|
||
whnf defs ctx sg $ pushSubstsWith' id th el
|
||
whnf defs ctx sg (DCloE (Sub el th)) =
|
||
whnf defs ctx sg $ pushSubstsWith' th id el
|
||
|
||
covering
|
||
CanWhnf Term Interface.isRedexT where
|
||
whnf _ _ _ t@(TYPE {}) = pure $ nred t
|
||
whnf _ _ _ t@(IOState {}) = pure $ nred t
|
||
whnf _ _ _ t@(Pi {}) = pure $ nred t
|
||
whnf _ _ _ t@(Lam {}) = pure $ nred t
|
||
whnf _ _ _ t@(Sig {}) = pure $ nred t
|
||
whnf _ _ _ t@(Pair {}) = pure $ nred t
|
||
whnf _ _ _ t@(Enum {}) = pure $ nred t
|
||
whnf _ _ _ t@(Tag {}) = pure $ nred t
|
||
whnf _ _ _ t@(Eq {}) = pure $ nred t
|
||
whnf _ _ _ t@(DLam {}) = pure $ nred t
|
||
whnf _ _ _ t@(NAT {}) = pure $ nred t
|
||
whnf _ _ _ t@(Nat {}) = pure $ nred t
|
||
whnf _ _ _ t@(STRING {}) = pure $ nred t
|
||
whnf _ _ _ t@(Str {}) = pure $ nred t
|
||
whnf _ _ _ t@(BOX {}) = pure $ nred t
|
||
whnf _ _ _ t@(Box {}) = pure $ nred t
|
||
|
||
whnf _ _ _ (Succ p loc) =
|
||
case nchoose $ isNatConst p of
|
||
Left _ => case p of
|
||
Nat p _ => pure $ nred $ Nat (S p) loc
|
||
E (Ann (Nat p _) _ _) => pure $ nred $ Nat (S p) loc
|
||
Right nc => pure $ Element (Succ p loc) nc
|
||
|
||
whnf defs ctx sg (Let _ rhs body _) =
|
||
whnf defs ctx sg $ sub1 body rhs
|
||
|
||
-- s ∷ A ⇝ s (in term context)
|
||
whnf defs ctx sg (E e) = do
|
||
Element e enf <- whnf defs ctx sg e
|
||
case nchoose $ isAnn e of
|
||
Left _ => let Ann {tm, _} = e in pure $ Element tm $ noOr1 $ noOr2 enf
|
||
Right na => pure $ Element (E e) $ na `orNo` enf
|
||
|
||
whnf defs ctx sg (CloT (Sub tm th)) =
|
||
whnf defs ctx sg $ pushSubstsWith' id th tm
|
||
whnf defs ctx sg (DCloT (Sub tm th)) =
|
||
whnf defs ctx sg $ pushSubstsWith' th id tm
|