rhiannon morris
5053e9b234
injecting from m to (n+m) is just id ::: id ::: ... ::: shift n. specifically, injecting from 0 is just the shift. so.
344 lines
12 KiB
Idris
344 lines
12 KiB
Idris
module Quox.Typechecker
|
||
|
||
import public Quox.Typing
|
||
import public Quox.Equal
|
||
|
||
import Data.List
|
||
|
||
%default total
|
||
|
||
|
||
public export
|
||
0 CanTC' : (q : Type) -> (q -> Type) -> (Type -> Type) -> Type
|
||
CanTC' q isGlobal m = (HasErr q m, MonadReader (Definitions' q isGlobal) m)
|
||
|
||
public export
|
||
0 CanTC : (q : Type) -> IsQty q => (Type -> Type) -> Type
|
||
CanTC q = CanTC' q IsGlobal
|
||
|
||
|
||
|
||
private
|
||
popQs : HasErr q m => IsQty q =>
|
||
QOutput q s -> QOutput q (s + n) -> m (QOutput q n)
|
||
popQs [<] qout = pure qout
|
||
popQs (pis :< pi) (qout :< rh) = do expectCompatQ rh pi; popQs pis qout
|
||
|
||
private %inline
|
||
popQ : HasErr q m => IsQty q => q -> QOutput q (S n) -> m (QOutput q n)
|
||
popQ pi = popQs [< pi]
|
||
|
||
|
||
|
||
|
||
parameters {auto _ : IsQty q} {auto _ : CanTC q m}
|
||
mutual
|
||
||| "Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ"
|
||
|||
|
||
||| `check ctx sg subj ty` checks that in the context `ctx`, the term
|
||
||| `subj` has the type `ty`, with quantity `sg`. if so, returns the
|
||
||| quantities of all bound variables that it used.
|
||
|||
|
||
||| if the dimension context is inconsistent, then return `Nothing`, without
|
||
||| doing any further work.
|
||
export covering %inline
|
||
check : (ctx : TyContext q d n) -> SQty q -> Term q d n -> Term q d n ->
|
||
m (CheckResult ctx.dctx q n)
|
||
check ctx sg subj ty = ifConsistent ctx.dctx $ checkC ctx sg subj ty
|
||
|
||
||| "Ψ | Γ ⊢₀ s ⇐ A"
|
||
|||
|
||
||| `check0 ctx subj ty` checks a term (as `check`) in a zero context.
|
||
export covering %inline
|
||
check0 : TyContext q d n -> Term q d n -> Term q d n -> m ()
|
||
check0 ctx tm ty = ignore $ check ctx szero tm ty
|
||
-- the output will always be 𝟎 because the subject quantity is 0
|
||
|
||
||| `check`, assuming the dimension context is consistent
|
||
export covering %inline
|
||
checkC : (ctx : TyContext q d n) -> SQty q -> Term q d n -> Term q d n ->
|
||
m (CheckResult' q n)
|
||
checkC ctx sg subj ty =
|
||
wrapErr (WhileChecking ctx sg.fst subj ty) $
|
||
let Element subj nc = pushSubsts subj in
|
||
check' ctx sg subj ty
|
||
|
||
||| "Ψ | Γ ⊢₀ s ⇐ ★ᵢ"
|
||
|||
|
||
||| `checkType ctx subj ty` checks a type (in a zero context). sometimes the
|
||
||| universe doesn't matter, only that a term is _a_ type, so it is optional.
|
||
export covering %inline
|
||
checkType : TyContext q d n -> Term q d n -> Maybe Universe -> m ()
|
||
checkType ctx subj l = ignore $ ifConsistent ctx.dctx $ checkTypeC ctx subj l
|
||
|
||
export covering %inline
|
||
checkTypeC : TyContext q d n -> Term q d n -> Maybe Universe -> m ()
|
||
checkTypeC ctx subj l =
|
||
wrapErr (WhileCheckingTy ctx subj l) $ checkTypeNoWrap ctx subj l
|
||
|
||
export covering %inline
|
||
checkTypeNoWrap : TyContext q d n -> Term q d n -> Maybe Universe -> m ()
|
||
checkTypeNoWrap ctx subj l =
|
||
let Element subj nc = pushSubsts subj in
|
||
checkType' ctx subj l
|
||
|
||
||| "Ψ | Γ ⊢ σ · e ⇒ A ⊳ Σ"
|
||
|||
|
||
||| `infer ctx sg subj` infers the type of `subj` in the context `ctx`,
|
||
||| and returns its type and the bound variables it used.
|
||
|||
|
||
||| if the dimension context is inconsistent, then return `Nothing`, without
|
||
||| doing any further work.
|
||
export covering %inline
|
||
infer : (ctx : TyContext q d n) -> SQty q -> Elim q d n ->
|
||
m (InferResult ctx.dctx q d n)
|
||
infer ctx sg subj = ifConsistent ctx.dctx $ inferC ctx sg subj
|
||
|
||
||| `infer`, assuming the dimension context is consistent
|
||
export covering %inline
|
||
inferC : (ctx : TyContext q d n) -> SQty q -> Elim q d n ->
|
||
m (InferResult' q d n)
|
||
inferC ctx sg subj =
|
||
wrapErr (WhileInferring ctx sg.fst subj) $
|
||
let Element subj nc = pushSubsts subj in
|
||
infer' ctx sg subj
|
||
|
||
|
||
private covering
|
||
toCheckType : TyContext q d n -> SQty q ->
|
||
(subj : Term q d n) -> (0 nc : NotClo subj) => Term q d n ->
|
||
m (CheckResult' q n)
|
||
toCheckType ctx sg t ty = do
|
||
u <- expectTYPE !ask ctx ty
|
||
expectEqualQ zero sg.fst
|
||
checkTypeNoWrap ctx t (Just u)
|
||
pure $ zeroFor ctx
|
||
|
||
private covering
|
||
check' : TyContext q d n -> SQty q ->
|
||
(subj : Term q d n) -> (0 nc : NotClo subj) => Term q d n ->
|
||
m (CheckResult' q n)
|
||
|
||
check' ctx sg t@(TYPE _) ty = toCheckType ctx sg t ty
|
||
|
||
check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty
|
||
|
||
check' ctx sg (Lam body) ty = do
|
||
(qty, arg, res) <- expectPi !ask ctx ty
|
||
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
|
||
-- with ρ ≤ σπ
|
||
let qty' = sg.fst * qty
|
||
qout <- checkC (extendTy qty' body.name arg ctx) sg body.term res.term
|
||
-- then Ψ | Γ ⊢ σ · (λx ⇒ t) ⇐ (π·x : A) → B ⊳ Σ
|
||
popQ qty' qout
|
||
|
||
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
|
||
|
||
check' ctx sg (Pair fst snd) ty = do
|
||
(tfst, tsnd) <- expectSig !ask ctx ty
|
||
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
|
||
qfst <- checkC ctx sg fst tfst
|
||
let tsnd = sub1 tsnd (fst :# tfst)
|
||
-- if Ψ | Γ ⊢ σ · t ⇐ B[s] ⊳ Σ₂
|
||
qsnd <- checkC ctx sg snd tsnd
|
||
-- then Ψ | Γ ⊢ σ · (s, t) ⇐ (x : A) × B ⊳ Σ₁ + Σ₂
|
||
pure $ qfst + qsnd
|
||
|
||
check' ctx sg t@(Enum _) ty = toCheckType ctx sg t ty
|
||
|
||
check' ctx sg (Tag t) ty = do
|
||
tags <- expectEnum !ask ctx ty
|
||
-- if t ∈ ts
|
||
unless (t `elem` tags) $ throwError $ TagNotIn t tags
|
||
-- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎
|
||
pure $ zeroFor ctx
|
||
|
||
check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty
|
||
|
||
check' ctx sg (DLam body) ty = do
|
||
(ty, l, r) <- expectEq !ask ctx ty
|
||
-- if Ψ, i | Γ ⊢ σ · t ⇐ A ⊳ Σ
|
||
qout <- checkC (extendDim body.name ctx) sg body.term ty.term
|
||
-- if Ψ | Γ ⊢ t‹0› = l : A‹0›
|
||
equal ctx ty.zero body.zero l
|
||
-- if Ψ | Γ ⊢ t‹1› = r : A‹1›
|
||
equal ctx ty.one body.one r
|
||
-- then Ψ | Γ ⊢ σ · (δ i ⇒ t) ⇐ Eq [i ⇒ A] l r ⊳ Σ
|
||
pure qout
|
||
|
||
check' ctx sg (E e) ty = do
|
||
-- if Ψ | Γ ⊢ σ · e ⇒ A' ⊳ Σ
|
||
infres <- inferC ctx sg e
|
||
-- if Ψ | Γ ⊢ A' <: A
|
||
subtype ctx infres.type ty
|
||
-- then Ψ | Γ ⊢ σ · e ⇐ A ⊳ Σ
|
||
pure infres.qout
|
||
|
||
private covering
|
||
checkType' : TyContext q d n ->
|
||
(subj : Term q d n) -> (0 nc : NotClo subj) =>
|
||
Maybe Universe -> m ()
|
||
|
||
checkType' ctx (TYPE k) u = do
|
||
-- if 𝓀 < ℓ then Ψ | Γ ⊢₀ Type 𝓀 ⇐ Type ℓ
|
||
case u of
|
||
Just l => unless (k < l) $ throwError $ BadUniverse k l
|
||
Nothing => pure ()
|
||
|
||
checkType' ctx (Pi qty arg res) u = do
|
||
-- if Ψ | Γ ⊢₀ A ⇐ Type ℓ
|
||
checkTypeC ctx arg u
|
||
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type ℓ
|
||
case res.body of
|
||
Y res' => checkTypeC (extendTy zero res.name arg ctx) res' u
|
||
N res' => checkTypeC ctx res' u
|
||
-- then Ψ | Γ ⊢₀ (π·x : A) → B ⇐ Type ℓ
|
||
|
||
checkType' ctx t@(Lam {}) u =
|
||
throwError $ NotType ctx t
|
||
|
||
checkType' ctx (Sig fst snd) u = do
|
||
-- if Ψ | Γ ⊢₀ A ⇐ Type ℓ
|
||
checkTypeC ctx fst u
|
||
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type ℓ
|
||
case snd.body of
|
||
Y snd' => checkTypeC (extendTy zero snd.name fst ctx) snd' u
|
||
N snd' => checkTypeC ctx snd' u
|
||
-- then Ψ | Γ ⊢₀ (x : A) × B ⇐ Type ℓ
|
||
|
||
checkType' ctx t@(Pair {}) u =
|
||
throwError $ NotType ctx t
|
||
|
||
checkType' ctx (Enum _) u = pure ()
|
||
-- Ψ | Γ ⊢₀ {ts} ⇐ Type ℓ
|
||
|
||
checkType' ctx t@(Tag {}) u =
|
||
throwError $ NotType ctx t
|
||
|
||
checkType' ctx (Eq t l r) u = do
|
||
-- if Ψ, i | Γ ⊢₀ A ⇐ Type ℓ
|
||
case t.body of
|
||
Y t' => checkTypeC (extendDim t.name ctx) t' u
|
||
N t' => checkTypeC ctx t' u
|
||
-- if Ψ | Γ ⊢₀ l ⇐ A‹0›
|
||
check0 ctx t.zero l
|
||
-- if Ψ | Γ ⊢₀ r ⇐ A‹1›
|
||
check0 ctx t.one r
|
||
-- then Ψ | Γ ⊢₀ Eq [i ⇒ A] l r ⇐ Type ℓ
|
||
|
||
checkType' ctx t@(DLam {}) u =
|
||
throwError $ NotType ctx t
|
||
|
||
checkType' ctx (E e) u = do
|
||
-- if Ψ | Γ ⊢ σ · e ⇒ A' ⊳ Σ
|
||
infres <- inferC ctx szero e
|
||
-- if Ψ | Γ ⊢ A' <: A
|
||
case u of
|
||
Just u => subtype ctx infres.type (TYPE u)
|
||
Nothing => ignore $ expectTYPE !ask ctx infres.type
|
||
-- then Ψ | Γ ⊢ σ · e ⇐ A ⊳ Σ
|
||
|
||
|
||
private covering
|
||
infer' : TyContext q d n -> SQty q ->
|
||
(subj : Elim q d n) -> (0 nc : NotClo subj) =>
|
||
m (InferResult' q d n)
|
||
|
||
infer' ctx sg (F x) = do
|
||
-- if π·x : A {≔ s} in global context
|
||
g <- lookupFree x
|
||
-- if σ ≤ π
|
||
expectCompatQ sg.fst g.qty
|
||
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
|
||
pure $ InfRes {type = injectT ctx g.type, qout = zeroFor ctx}
|
||
where
|
||
lookupFree : Name -> m (Definition q)
|
||
lookupFree x = lookupFree' !ask x
|
||
|
||
infer' ctx sg (B i) =
|
||
-- if x : A ∈ Γ
|
||
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ (𝟎, σ·x, 𝟎)
|
||
pure $ lookupBound sg.fst i ctx.tctx
|
||
where
|
||
lookupBound : q -> Var n -> TContext q d n -> InferResult' q d n
|
||
lookupBound pi VZ (ctx :< ty) =
|
||
InfRes {type = weakT ty, qout = zeroFor ctx :< pi}
|
||
lookupBound pi (VS i) (ctx :< _) =
|
||
let InfRes {type, qout} = lookupBound pi i ctx in
|
||
InfRes {type = weakT type, qout = qout :< zero}
|
||
|
||
infer' ctx sg (fun :@ arg) = do
|
||
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
|
||
funres <- inferC ctx sg fun
|
||
(qty, argty, res) <- expectPi !ask ctx funres.type
|
||
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂
|
||
argout <- checkC ctx (subjMult sg qty) arg argty
|
||
-- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + Σ₂
|
||
pure $ InfRes {
|
||
type = sub1 res $ arg :# argty,
|
||
qout = funres.qout + argout
|
||
}
|
||
|
||
infer' ctx sg (CasePair pi pair ret body) = do
|
||
-- if 1 ≤ π
|
||
expectCompatQ one pi
|
||
-- if Ψ | Γ ⊢ σ · pair ⇒ (x : A) × B ⊳ Σ₁
|
||
pairres <- inferC ctx sg pair
|
||
-- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type
|
||
checkTypeC (extendTy zero ret.name pairres.type ctx) ret.term Nothing
|
||
(tfst, tsnd) <- expectSig !ask ctx pairres.type
|
||
-- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐
|
||
-- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y
|
||
-- with ρ₁, ρ₂ ≤ πσ
|
||
let [< x, y] = body.names
|
||
pisg = pi * sg.fst
|
||
bodyctx = extendTyN [< (pisg, x, tfst), (pisg, y, tsnd.term)] ctx
|
||
bodyty = substCasePairRet pairres.type ret
|
||
bodyout <- checkC bodyctx sg body.term bodyty
|
||
-- then Ψ | Γ ⊢ σ · case ⋯ ⇒ ret[pair/p] ⊳ πΣ₁ + Σ₂
|
||
pure $ InfRes {
|
||
type = sub1 ret pair,
|
||
qout = pi * pairres.qout + !(popQs [< pisg, pisg] bodyout)
|
||
}
|
||
|
||
infer' ctx sg (CaseEnum pi t ret arms) {d, n} = do
|
||
-- if 1 ≤ π
|
||
expectCompatQ one pi
|
||
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
|
||
tres <- inferC ctx sg t
|
||
-- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type
|
||
checkTypeC (extendTy zero ret.name tres.type ctx) ret.term Nothing
|
||
-- if for each "a ⇒ s" in arms,
|
||
-- Ψ | Γ ⊢ σ · s ⇐ A[a ∷ {ts}/x] ⊳ Σ₂
|
||
-- for fixed Σ₂
|
||
let arms = SortedMap.toList arms
|
||
armres <- for arms $ \(a, s) =>
|
||
checkC ctx sg s (sub1 ret (Tag a :# tres.type))
|
||
armout <- allEqual (zip armres arms)
|
||
-- then Ψ | Γ ⊢ σ · case ⋯ ⇒ ret[t/x] ⊳ πΣ₁ + Σ₂
|
||
pure $ InfRes {
|
||
type = sub1 ret t,
|
||
qout = pi * tres.qout + armout
|
||
}
|
||
where
|
||
allEqual : List (QOutput q n, TagVal, Term q d n) -> m (QOutput q n)
|
||
allEqual [] = pure $ zeroFor ctx
|
||
allEqual lst@((x, _) :: xs) =
|
||
if all (\y => x == fst y) xs then pure x
|
||
else throwError $ BadCaseQtys ctx $
|
||
map (\(qs, t, s) => (qs, Tag t, s)) lst
|
||
|
||
infer' ctx sg (fun :% dim) = do
|
||
-- if Ψ | Γ ⊢ σ · f ⇒ Eq [i ⇒ A] l r ⊳ Σ
|
||
InfRes {type, qout} <- inferC ctx sg fun
|
||
ty <- fst <$> expectEq !ask ctx type
|
||
-- then Ψ | Γ ⊢ σ · f p ⇒ A‹p› ⊳ Σ
|
||
pure $ InfRes {type = dsub1 ty dim, qout}
|
||
|
||
infer' ctx sg (term :# type) = do
|
||
-- if Ψ | Γ ⊢₀ A ⇐ Type ℓ
|
||
checkTypeC ctx type Nothing
|
||
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
|
||
qout <- checkC ctx sg term type
|
||
-- then Ψ | Γ ⊢ σ · (s ∷ A) ⇒ A ⊳ Σ
|
||
pure $ InfRes {type, qout}
|