quox/lib/Quox/Syntax/Term/Base.idr

388 lines
11 KiB
Idris
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Quox.Syntax.Term.Base
import public Quox.Thin
import public Quox.Syntax.Var
import public Quox.Syntax.Shift
import public Quox.Syntax.Subst
import public Quox.Syntax.Qty
import public Quox.Syntax.Dim
import public Quox.Syntax.Term.TyConKind
import public Quox.Name
import public Quox.Loc
import public Quox.Context
import Quox.Pretty
import public Data.DPair
import Data.List
import Data.Maybe
import Data.Nat
import public Data.So
import Data.String
import Derive.Prelude
%default total
%language ElabReflection
%hide TT.Name
public export
TermLike : Type
TermLike = Nat -> Nat -> Type
public export
TSubstLike : Type
TSubstLike = Nat -> Nat -> Nat -> Type
public export
Universe : Type
Universe = Nat
public export
TagVal : Type
TagVal = String
||| type-checkable terms, which consists of types and constructor forms.
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export
data Term : (d, n : Nat) -> Type
%name Term s, t, r
||| inferrable terms, which consists of elimination forms like application and
||| `case` (as well as other terms with an annotation)
|||
||| first argument `d` is dimension scope size; second `n` is term scope size
public export
data Elim : (d, n : Nat) -> Type
%name Elim e, f
public export
ScopeTermN : Nat -> TermLike
ScopeTermN s d n = ScopedN s (\n => Term d n) n
public export
DScopeTermN : Nat -> TermLike
DScopeTermN s d n = ScopedN s (\d => Term d n) d
public export
ScopeTerm : TermLike
ScopeTerm = ScopeTermN 1
public export
DScopeTerm : TermLike
DScopeTerm = DScopeTermN 1
public export
TermT : TermLike
TermT = Thinned2 (\d, n => Term d n)
public export
ElimT : TermLike
ElimT = Thinned2 (\d, n => Elim d n)
public export
DimArg : TermLike
DimArg d n = Dim d
data Term where
||| type of types
TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0
||| function type
Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
||| function value
Lam : ScopeTerm d n -> Loc -> Term d n
||| pair type
Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
||| pair value
Pair : Subterms [Term, Term] d n -> Loc -> Term d n
||| enum type
Enum : List TagVal -> Loc -> Term 0 0
||| enum value
Tag : TagVal -> Loc -> Term 0 0
||| equality type
Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n
||| equality value
DLam : DScopeTerm d n -> Loc -> Term d n
||| natural numbers (temporary until 𝐖 gets added)
Nat : Loc -> Term 0 0
Zero : Loc -> Term 0 0
Succ : Term d n -> Loc -> Term 0 0
||| package a value with a quantity
||| e.g. a value of [ω. A], when unpacked, can be used ω times,
||| even if the box itself is linear
BOX : Qty -> Term d n -> Loc -> Term d n
Box : Term d n -> Loc -> Term d n
E : Elim d n -> Term d n
||| term closure/suspended substitution
CloT : WithSubst (Term d) (Elim d) n -> Term d n
||| dimension closure/suspended substitution
DCloT : WithSubst (\d => Term d n) Dim d -> Term d n
||| first argument `d` is dimension scope size, second `n` is term scope size
public export
data Elim where
||| free variable, possibly with a displacement (see @crude, or @mugen for a
||| more abstract and formalised take)
|||
||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂
F : Name -> Universe -> Loc -> Elim 0 0
||| bound variable
B : Loc -> Elim 0 1
||| term application
App : Subterms [Elim, Term] d n -> Loc -> Elim d n
||| pair match
||| - the subterms are, in order: [head, return type, body]
||| - the quantity is that of the head, and since pairs only have one
||| constructor, can be 0
CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n ->
Loc -> Elim d n
||| enum match
CaseEnum : Qty -> (arms : List TagVal) ->
Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n ->
Loc -> Elim d n
||| nat match
CaseNat : Qty -> Qty ->
Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n ->
Loc -> Elim d n
||| box match
CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n
||| dim application
DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n
||| type-annotated term
Ann : Subterms [Term, Term] d n -> Loc -> Elim d n
||| coerce a value along a type equality, or show its coherence
||| [@xtt; §2.1.1]
Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n ->
Loc -> Elim d n
||| "generalised composition" [@xtt; §2.1.2]
Comp : Subterms [Term, DimArg, DimArg, Term,
DimArg, DScopeTerm, DScopeTerm] d n ->
Loc -> Elim d n
||| match on types. needed for b.s. of coercions [@xtt; §2.2]
TypeCase : Subterms [Elim, Term, -- head, type
Term, -- ★
ScopeTermN 2, -- pi
ScopeTermN 2, -- sig
Term, -- enum
ScopeTermN 5, -- eq
Term, -- nat
ScopeTerm -- box
] d n -> Loc -> Elim d n
||| term closure/suspended substitution
CloE : WithSubst (Elim d) (Elim d) n -> Elim d n
||| dimension closure/suspended substitution
DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n
-- this kills the idris ☹
-- export %hint
-- EqTerm : Eq (Term d n)
-- export %hint
-- EqElim : Eq (Elim d n)
-- EqTerm = deriveEq
-- EqElim = deriveEq
-- mutual
-- export %hint
-- ShowTerm : Show (Term d n)
-- ShowTerm = assert_total {a = Show (Term d n)} deriveShow
-- export %hint
-- ShowElim : Show (Elim d n)
-- ShowElim = assert_total {a = Show (Elim d n)} deriveShow
-- ||| scope which ignores all its binders
-- public export %inline
-- SN : {s : Nat} -> f n -> Scoped s f n
-- SN = S (replicate s $ BN Unused noLoc) . N
-- ||| scope which uses its binders
-- public export %inline
-- SY : BContext s -> f (s + n) -> Scoped s f n
-- SY ns = S ns . Y
-- public export %inline
-- name : Scoped 1 f n -> BindName
-- name (S [< x] _) = x
-- public export %inline
-- (.name) : Scoped 1 f n -> BindName
-- s.name = name s
-- ||| more convenient Pi
-- public export %inline
-- PiY : (qty : Qty) -> (x : BindName) ->
-- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n
-- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
-- ||| more convenient Lam
-- public export %inline
-- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n
-- LamY {x, body, loc} = Lam {body = SY [< x] body, loc}
-- public export %inline
-- LamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- LamN {body, loc} = Lam {body = SN body, loc}
-- ||| non dependent function type
-- public export %inline
-- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n
-- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc}
-- ||| more convenient Sig
-- public export %inline
-- SigY : (x : BindName) -> (fst : Term d n) ->
-- (snd : Term d (S n)) -> (loc : Loc) -> Term d n
-- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc}
-- ||| non dependent pair type
-- public export %inline
-- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
-- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
-- ||| more convenient Eq
-- public export %inline
-- EqY : (i : BindName) -> (ty : Term (S d) n) ->
-- (l, r : Term d n) -> (loc : Loc) -> Term d n
-- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc}
-- ||| more convenient DLam
-- public export %inline
-- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n
-- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc}
-- public export %inline
-- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n
-- DLamN {body, loc} = DLam {body = SN body, loc}
-- ||| non dependent equality type
-- public export %inline
-- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
-- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
||| same as `F` but as a term
public export %inline
FT : Name -> Universe -> Loc -> Term 0 0
FT x u loc = E $ F x u loc
||| abbreviation for a bound variable like `BV 4` instead of
||| `B (VS (VS (VS (VS VZ))))`
public export %inline
BV : (i : Fin n) -> (loc : Loc) -> ElimT d n
BV i loc = Th2 zero (one' i) $ B loc
||| same as `BV` but as a term
public export %inline
BVT : (i : Fin n) -> (loc : Loc) -> TermT d n
BVT i loc = Th2 zero (one' i) $ E $ B loc
public export
makeNat : Nat -> Loc -> Term 0 0
makeNat 0 loc = Zero loc
makeNat (S k) loc = Succ (makeNat k loc) loc
export
Located (Elim d n) where
(F _ _ loc).loc = loc
(B loc).loc = loc
(App _ loc).loc = loc
(CasePair _ _ loc).loc = loc
(CaseEnum _ _ _ loc).loc = loc
(CaseNat _ _ _ loc).loc = loc
(CaseBox _ _ loc).loc = loc
(DApp _ loc).loc = loc
(Ann _ loc).loc = loc
(Coe _ loc).loc = loc
(Comp _ loc).loc = loc
(TypeCase _ loc).loc = loc
(CloE (Sub e _)).loc = e.loc
(DCloE (Sub e _)).loc = e.loc
export
Located (Term d n) where
(TYPE _ loc).loc = loc
(Pi _ _ loc).loc = loc
(Lam _ loc).loc = loc
(Sig _ loc).loc = loc
(Pair _ loc).loc = loc
(Enum _ loc).loc = loc
(Tag _ loc).loc = loc
(Eq _ loc).loc = loc
(DLam _ loc).loc = loc
(Nat loc).loc = loc
(Zero loc).loc = loc
(Succ _ loc).loc = loc
(BOX _ _ loc).loc = loc
(Box _ loc).loc = loc
(E e).loc = e.loc
(CloT (Sub t _)).loc = t.loc
(DCloT (Sub t _)).loc = t.loc
export
Relocatable (Elim d n) where
setLoc loc (F x u _) = F x u loc
setLoc loc (B _) = B loc
setLoc loc (App ts _) = App ts loc
setLoc loc (CasePair qty ts _) = CasePair qty ts loc
setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc
setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc
setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc
setLoc loc (DApp ts _) = DApp ts loc
setLoc loc (Ann ts _) = Ann ts loc
setLoc loc (Coe ts _) = Coe ts loc
setLoc loc (Comp ts _) = Comp ts loc
setLoc loc (TypeCase ts _) = TypeCase ts loc
setLoc loc (CloE (Sub term subst)) = CloE $ Sub (setLoc loc term) subst
setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst
export
Relocatable (Term d n) where
setLoc loc (TYPE l _) = TYPE l loc
setLoc loc (Pi qty ts _) = Pi qty ts loc
setLoc loc (Lam body _) = Lam body loc
setLoc loc (Sig ts _) = Sig ts loc
setLoc loc (Pair ts _) = Pair ts loc
setLoc loc (Enum cases _) = Enum cases loc
setLoc loc (Tag tag _) = Tag tag loc
setLoc loc (Eq ts _) = Eq ts loc
setLoc loc (DLam body _) = DLam body loc
setLoc loc (Nat _) = Nat loc
setLoc loc (Zero _) = Zero loc
setLoc loc (Succ p _) = Succ p loc
setLoc loc (BOX qty ty _) = BOX qty ty loc
setLoc loc (Box val _) = Box val loc
setLoc loc (E e) = E $ setLoc loc e
setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst
setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst