388 lines
11 KiB
Idris
388 lines
11 KiB
Idris
module Quox.Syntax.Term.Base
|
||
|
||
import public Quox.Thin
|
||
import public Quox.Syntax.Var
|
||
import public Quox.Syntax.Shift
|
||
import public Quox.Syntax.Subst
|
||
import public Quox.Syntax.Qty
|
||
import public Quox.Syntax.Dim
|
||
import public Quox.Syntax.Term.TyConKind
|
||
import public Quox.Name
|
||
import public Quox.Loc
|
||
import public Quox.Context
|
||
|
||
import Quox.Pretty
|
||
|
||
import public Data.DPair
|
||
import Data.List
|
||
import Data.Maybe
|
||
import Data.Nat
|
||
import public Data.So
|
||
import Data.String
|
||
import Derive.Prelude
|
||
|
||
%default total
|
||
%language ElabReflection
|
||
|
||
%hide TT.Name
|
||
|
||
|
||
public export
|
||
TermLike : Type
|
||
TermLike = Nat -> Nat -> Type
|
||
|
||
public export
|
||
TSubstLike : Type
|
||
TSubstLike = Nat -> Nat -> Nat -> Type
|
||
|
||
public export
|
||
Universe : Type
|
||
Universe = Nat
|
||
|
||
public export
|
||
TagVal : Type
|
||
TagVal = String
|
||
|
||
|
||
||| type-checkable terms, which consists of types and constructor forms.
|
||
|||
|
||
||| first argument `d` is dimension scope size; second `n` is term scope size
|
||
public export
|
||
data Term : (d, n : Nat) -> Type
|
||
%name Term s, t, r
|
||
|
||
||| inferrable terms, which consists of elimination forms like application and
|
||
||| `case` (as well as other terms with an annotation)
|
||
|||
|
||
||| first argument `d` is dimension scope size; second `n` is term scope size
|
||
public export
|
||
data Elim : (d, n : Nat) -> Type
|
||
%name Elim e, f
|
||
|
||
|
||
public export
|
||
ScopeTermN : Nat -> TermLike
|
||
ScopeTermN s d n = ScopedN s (\n => Term d n) n
|
||
|
||
public export
|
||
DScopeTermN : Nat -> TermLike
|
||
DScopeTermN s d n = ScopedN s (\d => Term d n) d
|
||
|
||
public export
|
||
ScopeTerm : TermLike
|
||
ScopeTerm = ScopeTermN 1
|
||
|
||
public export
|
||
DScopeTerm : TermLike
|
||
DScopeTerm = DScopeTermN 1
|
||
|
||
|
||
public export
|
||
TermT : TermLike
|
||
TermT = Thinned2 (\d, n => Term d n)
|
||
|
||
public export
|
||
ElimT : TermLike
|
||
ElimT = Thinned2 (\d, n => Elim d n)
|
||
|
||
|
||
public export
|
||
DimArg : TermLike
|
||
DimArg d n = Dim d
|
||
|
||
|
||
data Term where
|
||
||| type of types
|
||
TYPE : (l : Universe) -> (loc : Loc) -> Term 0 0
|
||
|
||
||| function type
|
||
Pi : Qty -> Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
|
||
||| function value
|
||
Lam : ScopeTerm d n -> Loc -> Term d n
|
||
|
||
||| pair type
|
||
Sig : Subterms [Term, ScopeTerm] d n -> Loc -> Term d n
|
||
||| pair value
|
||
Pair : Subterms [Term, Term] d n -> Loc -> Term d n
|
||
|
||
||| enum type
|
||
Enum : List TagVal -> Loc -> Term 0 0
|
||
||| enum value
|
||
Tag : TagVal -> Loc -> Term 0 0
|
||
|
||
||| equality type
|
||
Eq : Subterms [DScopeTerm, Term, Term] d n -> Loc -> Term d n
|
||
||| equality value
|
||
DLam : DScopeTerm d n -> Loc -> Term d n
|
||
|
||
||| natural numbers (temporary until 𝐖 gets added)
|
||
Nat : Loc -> Term 0 0
|
||
Zero : Loc -> Term 0 0
|
||
Succ : Term d n -> Loc -> Term 0 0
|
||
|
||
||| package a value with a quantity
|
||
||| e.g. a value of [ω. A], when unpacked, can be used ω times,
|
||
||| even if the box itself is linear
|
||
BOX : Qty -> Term d n -> Loc -> Term d n
|
||
Box : Term d n -> Loc -> Term d n
|
||
|
||
E : Elim d n -> Term d n
|
||
|
||
||| term closure/suspended substitution
|
||
CloT : WithSubst (Term d) (Elim d) n -> Term d n
|
||
||| dimension closure/suspended substitution
|
||
DCloT : WithSubst (\d => Term d n) Dim d -> Term d n
|
||
|
||
||| first argument `d` is dimension scope size, second `n` is term scope size
|
||
public export
|
||
data Elim where
|
||
||| free variable, possibly with a displacement (see @crude, or @mugen for a
|
||
||| more abstract and formalised take)
|
||
|||
|
||
||| e.g. if f : ★₀ → ★₁, then f¹ : ★₁ → ★₂
|
||
F : Name -> Universe -> Loc -> Elim 0 0
|
||
||| bound variable
|
||
B : Loc -> Elim 0 1
|
||
|
||
||| term application
|
||
App : Subterms [Elim, Term] d n -> Loc -> Elim d n
|
||
|
||
||| pair match
|
||
||| - the subterms are, in order: [head, return type, body]
|
||
||| - the quantity is that of the head, and since pairs only have one
|
||
||| constructor, can be 0
|
||
CasePair : Qty -> Subterms [Elim, ScopeTerm, ScopeTermN 2] d n ->
|
||
Loc -> Elim d n
|
||
|
||
||| enum match
|
||
CaseEnum : Qty -> (arms : List TagVal) ->
|
||
Subterms (Elim :: ScopeTerm :: (Term <$ arms)) d n ->
|
||
Loc -> Elim d n
|
||
|
||
||| nat match
|
||
CaseNat : Qty -> Qty ->
|
||
Subterms [Elim, ScopeTerm, Term, ScopeTermN 2] d n ->
|
||
Loc -> Elim d n
|
||
|
||
||| box match
|
||
CaseBox : Qty -> Subterms [Elim, ScopeTerm, ScopeTerm] d n -> Loc -> Elim d n
|
||
|
||
||| dim application
|
||
DApp : Subterms [Elim, DimArg] d n -> Loc -> Elim d n
|
||
|
||
||| type-annotated term
|
||
Ann : Subterms [Term, Term] d n -> Loc -> Elim d n
|
||
|
||
||| coerce a value along a type equality, or show its coherence
|
||
||| [@xtt; §2.1.1]
|
||
Coe : Subterms [DScopeTerm, DimArg, DimArg, Term] d n ->
|
||
Loc -> Elim d n
|
||
|
||
||| "generalised composition" [@xtt; §2.1.2]
|
||
Comp : Subterms [Term, DimArg, DimArg, Term,
|
||
DimArg, DScopeTerm, DScopeTerm] d n ->
|
||
Loc -> Elim d n
|
||
|
||
||| match on types. needed for b.s. of coercions [@xtt; §2.2]
|
||
TypeCase : Subterms [Elim, Term, -- head, type
|
||
Term, -- ★
|
||
ScopeTermN 2, -- pi
|
||
ScopeTermN 2, -- sig
|
||
Term, -- enum
|
||
ScopeTermN 5, -- eq
|
||
Term, -- nat
|
||
ScopeTerm -- box
|
||
] d n -> Loc -> Elim d n
|
||
|
||
||| term closure/suspended substitution
|
||
CloE : WithSubst (Elim d) (Elim d) n -> Elim d n
|
||
||| dimension closure/suspended substitution
|
||
DCloE : WithSubst (\d => Elim d n) Dim d -> Elim d n
|
||
|
||
|
||
-- this kills the idris ☹
|
||
-- export %hint
|
||
-- EqTerm : Eq (Term d n)
|
||
|
||
-- export %hint
|
||
-- EqElim : Eq (Elim d n)
|
||
|
||
-- EqTerm = deriveEq
|
||
-- EqElim = deriveEq
|
||
|
||
|
||
-- mutual
|
||
-- export %hint
|
||
-- ShowTerm : Show (Term d n)
|
||
-- ShowTerm = assert_total {a = Show (Term d n)} deriveShow
|
||
|
||
-- export %hint
|
||
-- ShowElim : Show (Elim d n)
|
||
-- ShowElim = assert_total {a = Show (Elim d n)} deriveShow
|
||
|
||
-- ||| scope which ignores all its binders
|
||
-- public export %inline
|
||
-- SN : {s : Nat} -> f n -> Scoped s f n
|
||
-- SN = S (replicate s $ BN Unused noLoc) . N
|
||
|
||
-- ||| scope which uses its binders
|
||
-- public export %inline
|
||
-- SY : BContext s -> f (s + n) -> Scoped s f n
|
||
-- SY ns = S ns . Y
|
||
|
||
-- public export %inline
|
||
-- name : Scoped 1 f n -> BindName
|
||
-- name (S [< x] _) = x
|
||
|
||
-- public export %inline
|
||
-- (.name) : Scoped 1 f n -> BindName
|
||
-- s.name = name s
|
||
|
||
-- ||| more convenient Pi
|
||
-- public export %inline
|
||
-- PiY : (qty : Qty) -> (x : BindName) ->
|
||
-- (arg : Term d n) -> (res : Term d (S n)) -> (loc : Loc) -> Term d n
|
||
-- PiY {qty, x, arg, res, loc} = Pi {qty, arg, res = SY [< x] res, loc}
|
||
|
||
-- ||| more convenient Lam
|
||
-- public export %inline
|
||
-- LamY : (x : BindName) -> (body : Term d (S n)) -> (loc : Loc) -> Term d n
|
||
-- LamY {x, body, loc} = Lam {body = SY [< x] body, loc}
|
||
|
||
-- public export %inline
|
||
-- LamN : (body : Term d n) -> (loc : Loc) -> Term d n
|
||
-- LamN {body, loc} = Lam {body = SN body, loc}
|
||
|
||
-- ||| non dependent function type
|
||
-- public export %inline
|
||
-- Arr : (qty : Qty) -> (arg, res : Term d n) -> (loc : Loc) -> Term d n
|
||
-- Arr {qty, arg, res, loc} = Pi {qty, arg, res = SN res, loc}
|
||
|
||
-- ||| more convenient Sig
|
||
-- public export %inline
|
||
-- SigY : (x : BindName) -> (fst : Term d n) ->
|
||
-- (snd : Term d (S n)) -> (loc : Loc) -> Term d n
|
||
-- SigY {x, fst, snd, loc} = Sig {fst, snd = SY [< x] snd, loc}
|
||
|
||
-- ||| non dependent pair type
|
||
-- public export %inline
|
||
-- And : (fst, snd : Term d n) -> (loc : Loc) -> Term d n
|
||
-- And {fst, snd, loc} = Sig {fst, snd = SN snd, loc}
|
||
|
||
-- ||| more convenient Eq
|
||
-- public export %inline
|
||
-- EqY : (i : BindName) -> (ty : Term (S d) n) ->
|
||
-- (l, r : Term d n) -> (loc : Loc) -> Term d n
|
||
-- EqY {i, ty, l, r, loc} = Eq {ty = SY [< i] ty, l, r, loc}
|
||
|
||
-- ||| more convenient DLam
|
||
-- public export %inline
|
||
-- DLamY : (i : BindName) -> (body : Term (S d) n) -> (loc : Loc) -> Term d n
|
||
-- DLamY {i, body, loc} = DLam {body = SY [< i] body, loc}
|
||
|
||
-- public export %inline
|
||
-- DLamN : (body : Term d n) -> (loc : Loc) -> Term d n
|
||
-- DLamN {body, loc} = DLam {body = SN body, loc}
|
||
|
||
-- ||| non dependent equality type
|
||
-- public export %inline
|
||
-- Eq0 : (ty, l, r : Term d n) -> (loc : Loc) -> Term d n
|
||
-- Eq0 {ty, l, r, loc} = Eq {ty = SN ty, l, r, loc}
|
||
|
||
|
||
||| same as `F` but as a term
|
||
public export %inline
|
||
FT : Name -> Universe -> Loc -> Term 0 0
|
||
FT x u loc = E $ F x u loc
|
||
|
||
||| abbreviation for a bound variable like `BV 4` instead of
|
||
||| `B (VS (VS (VS (VS VZ))))`
|
||
public export %inline
|
||
BV : (i : Fin n) -> (loc : Loc) -> ElimT d n
|
||
BV i loc = Th2 zero (one' i) $ B loc
|
||
|
||
||| same as `BV` but as a term
|
||
public export %inline
|
||
BVT : (i : Fin n) -> (loc : Loc) -> TermT d n
|
||
BVT i loc = Th2 zero (one' i) $ E $ B loc
|
||
|
||
public export
|
||
makeNat : Nat -> Loc -> Term 0 0
|
||
makeNat 0 loc = Zero loc
|
||
makeNat (S k) loc = Succ (makeNat k loc) loc
|
||
|
||
|
||
export
|
||
Located (Elim d n) where
|
||
(F _ _ loc).loc = loc
|
||
(B loc).loc = loc
|
||
(App _ loc).loc = loc
|
||
(CasePair _ _ loc).loc = loc
|
||
(CaseEnum _ _ _ loc).loc = loc
|
||
(CaseNat _ _ _ loc).loc = loc
|
||
(CaseBox _ _ loc).loc = loc
|
||
(DApp _ loc).loc = loc
|
||
(Ann _ loc).loc = loc
|
||
(Coe _ loc).loc = loc
|
||
(Comp _ loc).loc = loc
|
||
(TypeCase _ loc).loc = loc
|
||
(CloE (Sub e _)).loc = e.loc
|
||
(DCloE (Sub e _)).loc = e.loc
|
||
|
||
export
|
||
Located (Term d n) where
|
||
(TYPE _ loc).loc = loc
|
||
(Pi _ _ loc).loc = loc
|
||
(Lam _ loc).loc = loc
|
||
(Sig _ loc).loc = loc
|
||
(Pair _ loc).loc = loc
|
||
(Enum _ loc).loc = loc
|
||
(Tag _ loc).loc = loc
|
||
(Eq _ loc).loc = loc
|
||
(DLam _ loc).loc = loc
|
||
(Nat loc).loc = loc
|
||
(Zero loc).loc = loc
|
||
(Succ _ loc).loc = loc
|
||
(BOX _ _ loc).loc = loc
|
||
(Box _ loc).loc = loc
|
||
(E e).loc = e.loc
|
||
(CloT (Sub t _)).loc = t.loc
|
||
(DCloT (Sub t _)).loc = t.loc
|
||
|
||
|
||
export
|
||
Relocatable (Elim d n) where
|
||
setLoc loc (F x u _) = F x u loc
|
||
setLoc loc (B _) = B loc
|
||
setLoc loc (App ts _) = App ts loc
|
||
setLoc loc (CasePair qty ts _) = CasePair qty ts loc
|
||
setLoc loc (CaseEnum qty arms ts _) = CaseEnum qty arms ts loc
|
||
setLoc loc (CaseNat qty qtyIH ts _) = CaseNat qty qtyIH ts loc
|
||
setLoc loc (CaseBox qty ts _) = CaseBox qty ts loc
|
||
setLoc loc (DApp ts _) = DApp ts loc
|
||
setLoc loc (Ann ts _) = Ann ts loc
|
||
setLoc loc (Coe ts _) = Coe ts loc
|
||
setLoc loc (Comp ts _) = Comp ts loc
|
||
setLoc loc (TypeCase ts _) = TypeCase ts loc
|
||
setLoc loc (CloE (Sub term subst)) = CloE $ Sub (setLoc loc term) subst
|
||
setLoc loc (DCloE (Sub term subst)) = DCloE $ Sub (setLoc loc term) subst
|
||
|
||
export
|
||
Relocatable (Term d n) where
|
||
setLoc loc (TYPE l _) = TYPE l loc
|
||
setLoc loc (Pi qty ts _) = Pi qty ts loc
|
||
setLoc loc (Lam body _) = Lam body loc
|
||
setLoc loc (Sig ts _) = Sig ts loc
|
||
setLoc loc (Pair ts _) = Pair ts loc
|
||
setLoc loc (Enum cases _) = Enum cases loc
|
||
setLoc loc (Tag tag _) = Tag tag loc
|
||
setLoc loc (Eq ts _) = Eq ts loc
|
||
setLoc loc (DLam body _) = DLam body loc
|
||
setLoc loc (Nat _) = Nat loc
|
||
setLoc loc (Zero _) = Zero loc
|
||
setLoc loc (Succ p _) = Succ p loc
|
||
setLoc loc (BOX qty ty _) = BOX qty ty loc
|
||
setLoc loc (Box val _) = Box val loc
|
||
setLoc loc (E e) = E $ setLoc loc e
|
||
setLoc loc (CloT (Sub term subst)) = CloT $ Sub (setLoc loc term) subst
|
||
setLoc loc (DCloT (Sub term subst)) = DCloT $ Sub (setLoc loc term) subst
|