140 lines
4.4 KiB
Idris
140 lines
4.4 KiB
Idris
module Tests.Reduce
|
|
|
|
import Quox.Syntax as Lib
|
|
import Quox.Equal
|
|
import Control.Monad.ST.Extra
|
|
import TypingImpls
|
|
import AstExtra
|
|
import TAP
|
|
import Control.Eff
|
|
|
|
%hide Prelude.App
|
|
%hide Pretty.App
|
|
|
|
|
|
runWhnf : Eff Whnf a -> Either Error a
|
|
runWhnf act = runSTErr $ do
|
|
runEff act [handleExcept (\e => stLeft e),
|
|
handleStateSTRef !(liftST $ newSTRef 0)]
|
|
|
|
parameters {0 isRedex : RedexTest tm} {auto _ : CanWhnf tm isRedex} {d, n : Nat}
|
|
{auto _ : (Eq (tm d n), Show (tm d n))}
|
|
{default empty defs : Definitions}
|
|
{default SOne sg : SQty}
|
|
private
|
|
testWhnf : String -> WhnfContext d n -> tm d n -> tm d n -> Test
|
|
testWhnf label ctx from to = test "\{label} (whnf)" $ do
|
|
result <- mapFst toInfo $ runWhnf $ whnf0 defs ctx sg from
|
|
unless (result == to) $ Left [("exp", show to), ("got", show result)]
|
|
|
|
private
|
|
testNoStep : String -> WhnfContext d n -> tm d n -> Test
|
|
testNoStep label ctx e = testWhnf label ctx e e
|
|
|
|
private
|
|
ctx : {n : Nat} -> Context (\n => (BindName, Term 0 n)) n -> WhnfContext 0 n
|
|
ctx xs = let (ns, ts) = unzip xs in MkWhnfContext [<] ns ts
|
|
|
|
|
|
export
|
|
tests : Test
|
|
tests = "whnf" :- [
|
|
"head constructors" :- [
|
|
testNoStep "★₀" empty $ ^TYPE 0,
|
|
testNoStep "1.A → B" empty $
|
|
^Arr One (^FT "A" 0) (^FT "B" 0),
|
|
testNoStep "(x: A) ⊸ B x" empty $
|
|
^PiY One "x" (^FT "A" 0) (E $ ^App (^F "B" 0) (^BVT 0)),
|
|
testNoStep "λ x ⇒ x" empty $
|
|
^LamY "x" (^BVT 0),
|
|
testNoStep "f a" empty $
|
|
E $ ^App (^F "f" 0) (^FT "a" 0)
|
|
],
|
|
|
|
"neutrals" :- [
|
|
testNoStep "x" (ctx [< ("A", ^NAT)]) $ ^BV 0,
|
|
testNoStep "a" empty $ ^F "a" 0,
|
|
testNoStep "f a" empty $ ^App (^F "f" 0) (^FT "a" 0),
|
|
testNoStep "★₀ ∷ ★₁" empty $ ^Ann (^TYPE 0) (^TYPE 1)
|
|
],
|
|
|
|
"redexes" :- [
|
|
testWhnf "a ∷ A" empty
|
|
(^Ann (^FT "a" 0) (^FT "A" 0))
|
|
(^F "a" 0),
|
|
testWhnf "★₁ ∷ ★₃" empty
|
|
(E $ ^Ann (^TYPE 1) (^TYPE 3))
|
|
(^TYPE 1),
|
|
testWhnf "(λ x ⇒ x ∷ 1.A → A) a" empty
|
|
(^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A" 0) (^FT "A" 0)))
|
|
(^FT "a" 0))
|
|
(^F "a" 0)
|
|
],
|
|
|
|
"definitions" :- [
|
|
testWhnf "a (transparent)" empty
|
|
{defs = fromList [("a", ^mkDef GZero (^TYPE 1) (^TYPE 0) Nothing False)]}
|
|
(^F "a" 0) (^Ann (^TYPE 0) (^TYPE 1)),
|
|
testNoStep "a (opaque)" empty
|
|
{defs = fromList [("a", ^mkPostulate GZero (^TYPE 1) Nothing False)]}
|
|
(^F "a" 0)
|
|
],
|
|
|
|
"elim closure" :- [
|
|
testWhnf "x{}" (ctx [< ("x", ^NAT)])
|
|
(CloE (Sub (^BV 0) id))
|
|
(^BV 0),
|
|
testWhnf "x{a/x}" empty
|
|
(CloE (Sub (^BV 0) (^F "a" 0 ::: id)))
|
|
(^F "a" 0),
|
|
testWhnf "x{a/y}" (ctx [< ("x", ^NAT)])
|
|
(CloE (Sub (^BV 0) (^BV 0 ::: ^F "a" 0 ::: id)))
|
|
(^BV 0),
|
|
testWhnf "x{(y{a/y})/x}" empty
|
|
(CloE (Sub (^BV 0) ((CloE (Sub (^BV 0) (^F "a" 0 ::: id))) ::: id)))
|
|
(^F "a" 0),
|
|
testWhnf "(x y){f/x,a/y}" empty
|
|
(CloE (Sub (^App (^BV 0) (^BVT 1)) (^F "f" 0 ::: ^F "a" 0 ::: id)))
|
|
(^App (^F "f" 0) (^FT "a" 0)),
|
|
testWhnf "(y ∷ x){A/x}" (ctx [< ("x", ^NAT)])
|
|
(CloE (Sub (^Ann (^BVT 1) (^BVT 0)) (^F "A" 0 ::: id)))
|
|
(^BV 0),
|
|
testWhnf "(y ∷ x){A/x,a/y}" empty
|
|
(CloE (Sub (^Ann (^BVT 1) (^BVT 0)) (^F "A" 0 ::: ^F "a" 0 ::: id)))
|
|
(^F "a" 0)
|
|
],
|
|
|
|
"term closure" :- [
|
|
testWhnf "(λ y ⇒ x){a/x}" empty
|
|
(CloT (Sub (^LamN (^BVT 0)) (^F "a" 0 ::: id)))
|
|
(^LamN (^FT "a" 0)),
|
|
testWhnf "(λy. y){a/x}" empty
|
|
(CloT (Sub (^LamY "y" (^BVT 0)) (^F "a" 0 ::: id)))
|
|
(^LamY "y" (^BVT 0))
|
|
],
|
|
|
|
"looking inside `E`" :- [
|
|
testWhnf "(λx. x ∷ A ⊸ A) a" empty
|
|
(E $ ^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A" 0) (^FT "A" 0)))
|
|
(^FT "a" 0))
|
|
(^FT "a" 0)
|
|
],
|
|
|
|
"nested redex" :- [
|
|
testNoStep "λ y ⇒ ((λ x ⇒ x) ∷ 1.A → A) y" empty $
|
|
^LamY "y" (E $
|
|
^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A" 0) (^FT "A" 0)))
|
|
(^BVT 0)),
|
|
testNoStep "f (((λ x ⇒ x) ∷ 1.A → A) a)" empty $
|
|
^App (^F "f" 0)
|
|
(E $ ^App (^Ann (^LamY "x" (^BVT 0)) (^Arr One (^FT "A" 0) (^FT "A" 0)))
|
|
(^FT "a" 0)),
|
|
testNoStep "λx. (y x){x/x,a/y}" (ctx [< ("y", ^NAT)]) $
|
|
^LamY "x" (CloT $ Sub (E $ ^App (^BV 1) (^BVT 0))
|
|
(^BV 0 ::: ^F "a" 0 ::: id)),
|
|
testNoStep "f (y x){x/x,a/y}" (ctx [< ("y", ^NAT)]) $
|
|
^App (^F "f" 0)
|
|
(CloT (Sub (E $ ^App (^BV 1) (^BVT 0))
|
|
(^BV 0 ::: ^F "a" 0 ::: id)))
|
|
]
|
|
]
|