270 lines
7.9 KiB
Idris
270 lines
7.9 KiB
Idris
module Quox.Syntax.Term.Reduce
|
|
|
|
import Quox.No
|
|
import Quox.Syntax.Term.Base
|
|
import Quox.Syntax.Term.Subst
|
|
import Data.Vect
|
|
import Data.Maybe
|
|
|
|
%default total
|
|
|
|
|
|
namespace Elim
|
|
public export %inline
|
|
isClo : Elim {} -> Bool
|
|
isClo (CloE {}) = True
|
|
isClo (DCloE {}) = True
|
|
isClo _ = False
|
|
|
|
public export
|
|
0 NotClo : Pred $ Elim {}
|
|
NotClo = No . isClo
|
|
|
|
namespace Term
|
|
public export %inline
|
|
isClo : Term {} -> Bool
|
|
isClo (CloT {}) = True
|
|
isClo (DCloT {}) = True
|
|
isClo (E e) = isClo e
|
|
isClo _ = False
|
|
|
|
public export
|
|
0 NotClo : Pred $ Term {}
|
|
NotClo = No . isClo
|
|
|
|
public export
|
|
0 NonCloElim : TermLike
|
|
NonCloElim q d n = Subset (Elim q d n) NotClo
|
|
|
|
public export
|
|
0 NonCloTerm : TermLike
|
|
NonCloTerm q d n = Subset (Term q d n) NotClo
|
|
|
|
|
|
public export %inline
|
|
ncloT : (t : Term q d n) -> (0 nc : NotClo t) => NonCloTerm q d n
|
|
ncloT t = Element t nc
|
|
|
|
public export %inline
|
|
ncloE : (e : Elim q d n) -> (0 nc : NotClo e) => NonCloElim q d n
|
|
ncloE e = Element e nc
|
|
|
|
|
|
mutual
|
|
namespace Term
|
|
||| if the input term has any top-level closures, push them under one layer of
|
|
||| syntax
|
|
export %inline
|
|
pushSubsts : Term q d n -> NonCloTerm q d n
|
|
pushSubsts s = pushSubstsWith id id s
|
|
|
|
export
|
|
pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to ->
|
|
Term q dfrom from -> NonCloTerm q dto to
|
|
pushSubstsWith th ph (TYPE l) =
|
|
ncloT $ TYPE l
|
|
pushSubstsWith th ph (Pi qty x a body) =
|
|
ncloT $ Pi qty x (subs a th ph) (subs body th ph)
|
|
pushSubstsWith th ph (Lam x body) =
|
|
ncloT $ Lam x $ subs body th ph
|
|
pushSubstsWith th ph (Sig x a b) =
|
|
ncloT $ Sig x (subs a th ph) (subs b th ph)
|
|
pushSubstsWith th ph (Pair s t) =
|
|
ncloT $ Pair (subs s th ph) (subs t th ph)
|
|
pushSubstsWith th ph (Eq i ty l r) =
|
|
ncloT $ Eq i (subs ty th ph) (subs l th ph) (subs r th ph)
|
|
pushSubstsWith th ph (DLam i body) =
|
|
ncloT $ DLam i $ subs body th ph
|
|
pushSubstsWith th ph (E e) =
|
|
let Element e nc = pushSubstsWith th ph e in ncloT $ E e
|
|
pushSubstsWith th ph (CloT s ps) =
|
|
pushSubstsWith th (comp th ps ph) s
|
|
pushSubstsWith th ph (DCloT s ps) =
|
|
pushSubstsWith (ps . th) ph s
|
|
|
|
namespace Elim
|
|
||| if the input elimination has any top-level closures, push them under one
|
|
||| layer of syntax
|
|
export %inline
|
|
pushSubsts : Elim q d n -> NonCloElim q d n
|
|
pushSubsts e = pushSubstsWith id id e
|
|
|
|
export
|
|
pushSubstsWith : DSubst dfrom dto -> TSubst q dto from to ->
|
|
Elim q dfrom from -> NonCloElim q dto to
|
|
pushSubstsWith th ph (F x) =
|
|
ncloE $ F x
|
|
pushSubstsWith th ph (B i) =
|
|
let res = ph !! i in
|
|
case nchoose $ isClo res of
|
|
Left yes => assert_total pushSubsts res
|
|
Right no => Element res no
|
|
pushSubstsWith th ph (f :@ s) =
|
|
ncloE $ subs f th ph :@ subs s th ph
|
|
pushSubstsWith th ph (CasePair pi p x r y z b) =
|
|
ncloE $ CasePair pi (subs p th ph) x (subs r th ph) y z (subs b th ph)
|
|
pushSubstsWith th ph (f :% d) =
|
|
ncloE $ subs f th ph :% (d // th)
|
|
pushSubstsWith th ph (s :# a) =
|
|
ncloE $ subs s th ph :# subs a th ph
|
|
pushSubstsWith th ph (CloE e ps) =
|
|
pushSubstsWith th (comp th ps ph) e
|
|
pushSubstsWith th ph (DCloE e ps) =
|
|
pushSubstsWith (ps . th) ph e
|
|
|
|
|
|
parameters (th : DSubst dfrom dto) (ph : TSubst q dto from to)
|
|
namespace Term
|
|
public export %inline
|
|
pushSubstsWith' : Term q dfrom from -> Term q dto to
|
|
pushSubstsWith' s = (pushSubstsWith th ph s).fst
|
|
|
|
namespace Elim
|
|
public export %inline
|
|
pushSubstsWith' : Elim q dfrom from -> Elim q dto to
|
|
pushSubstsWith' e = (pushSubstsWith th ph e).fst
|
|
|
|
|
|
public export 0
|
|
Lookup : TermLike
|
|
Lookup q d n = Name -> Maybe $ Elim q d n
|
|
|
|
public export %inline
|
|
isLamHead : Elim {} -> Bool
|
|
isLamHead (Lam {} :# Pi {}) = True
|
|
isLamHead _ = False
|
|
|
|
public export %inline
|
|
isDLamHead : Elim {} -> Bool
|
|
isDLamHead (DLam {} :# Eq {}) = True
|
|
isDLamHead _ = False
|
|
|
|
public export %inline
|
|
isPairHead : Elim {} -> Bool
|
|
isPairHead (Pair {} :# Sig {}) = True
|
|
isPairHead _ = False
|
|
|
|
public export %inline
|
|
isE : Term {} -> Bool
|
|
isE (E _) = True
|
|
isE _ = False
|
|
|
|
public export %inline
|
|
isAnn : Elim {} -> Bool
|
|
isAnn (_ :# _) = True
|
|
isAnn _ = False
|
|
|
|
parameters (g : Lookup q d n)
|
|
mutual
|
|
namespace Elim
|
|
public export
|
|
isRedex : Elim q d n -> Bool
|
|
isRedex (F x) = isJust $ g x
|
|
isRedex (B _) = False
|
|
isRedex (f :@ _) = isRedex f || isLamHead f
|
|
isRedex (CasePair {pair, _}) = isRedex pair || isPairHead pair
|
|
isRedex (f :% _) = isRedex f || isDLamHead f
|
|
isRedex (t :# a) = isE t || isRedex t || isRedex a
|
|
isRedex (CloE {}) = True
|
|
isRedex (DCloE {}) = True
|
|
|
|
namespace Term
|
|
public export
|
|
isRedex : Term q d n -> Bool
|
|
isRedex (CloT {}) = True
|
|
isRedex (DCloT {}) = True
|
|
isRedex (E e) = isAnn e || isRedex e
|
|
isRedex _ = False
|
|
|
|
namespace Elim
|
|
public export
|
|
0 IsRedex, NotRedex : Pred $ Elim q d n
|
|
IsRedex = So . isRedex
|
|
NotRedex = No . isRedex
|
|
|
|
namespace Term
|
|
public export
|
|
0 IsRedex, NotRedex : Pred $ Term q d n
|
|
IsRedex = So . isRedex
|
|
NotRedex = No . isRedex
|
|
|
|
public export
|
|
0 NonRedexElim, NonRedexTerm : (q, d, n : _) -> Lookup q d n -> Type
|
|
NonRedexElim q d n g = Subset (Elim q d n) (NotRedex g)
|
|
NonRedexTerm q d n g = Subset (Term q d n) (NotRedex g)
|
|
|
|
|
|
parameters (g : Lookup q d n)
|
|
mutual
|
|
namespace Elim
|
|
export covering
|
|
whnf : Elim q d n -> NonRedexElim q d n g
|
|
whnf (F x) with (g x) proof eq
|
|
_ | Just y = whnf y
|
|
_ | Nothing = Element (F x) $ rewrite eq in Ah
|
|
|
|
whnf (B i) = Element (B i) Ah
|
|
|
|
whnf (f :@ s) =
|
|
let Element f fnf = whnf f in
|
|
case nchoose $ isLamHead f of
|
|
Left _ =>
|
|
let Lam {body, _} :# Pi {arg, res, _} = f
|
|
s = s :# arg
|
|
in
|
|
whnf $ sub1 body s :# sub1 res s
|
|
Right nlh => Element (f :@ s) $ fnf `orNo` nlh
|
|
|
|
whnf (CasePair pi pair r ret x y body) =
|
|
let Element pair pairnf = whnf pair in
|
|
case nchoose $ isPairHead pair of
|
|
Left _ =>
|
|
let Pair {fst, snd} :# Sig {fst = tfst, snd = tsnd, _} = pair
|
|
fst = fst :# tfst
|
|
snd = snd :# sub1 tsnd fst
|
|
in
|
|
whnf $ subN body [fst, snd] :# sub1 ret pair
|
|
Right np =>
|
|
Element (CasePair pi pair r ret x y body) $ pairnf `orNo` np
|
|
|
|
whnf (f :% p) =
|
|
let Element f fnf = whnf f in
|
|
case nchoose $ isDLamHead f of
|
|
Left _ =>
|
|
let DLam {body, _} :# Eq {ty, l, r, _} = f
|
|
body = endsOr l r (dsub1 body p) p
|
|
in
|
|
whnf $ body :# dsub1 ty p
|
|
Right ndlh =>
|
|
Element (f :% p) $ fnf `orNo` ndlh
|
|
|
|
whnf (s :# a) =
|
|
let Element s snf = whnf s in
|
|
case nchoose $ isE s of
|
|
Left _ => let E e = s in Element e $ noOr2 snf
|
|
Right ne =>
|
|
let Element a anf = whnf a in
|
|
Element (s :# a) $ ne `orNo` snf `orNo` anf
|
|
|
|
whnf (CloE el th) = whnf $ pushSubstsWith' id th el
|
|
whnf (DCloE el th) = whnf $ pushSubstsWith' th id el
|
|
|
|
namespace Term
|
|
export covering
|
|
whnf : Term q d n -> NonRedexTerm q d n g
|
|
whnf t@(TYPE {}) = Element t Ah
|
|
whnf t@(Pi {}) = Element t Ah
|
|
whnf t@(Lam {}) = Element t Ah
|
|
whnf t@(Sig {}) = Element t Ah
|
|
whnf t@(Pair {}) = Element t Ah
|
|
whnf t@(Eq {}) = Element t Ah
|
|
whnf t@(DLam {}) = Element t Ah
|
|
|
|
whnf (E e) =
|
|
let Element e enf = whnf e in
|
|
case nchoose $ isAnn e of
|
|
Left _ => let tm :# _ = e in Element tm $ noOr1 $ noOr2 enf
|
|
Right na => Element (E e) $ na `orNo` enf
|
|
|
|
whnf (CloT tm th) = whnf $ pushSubstsWith' id th tm
|
|
whnf (DCloT tm th) = whnf $ pushSubstsWith' th id tm
|