330 lines
12 KiB
Idris
330 lines
12 KiB
Idris
module Tests.Parser
|
||
|
||
import Quox.Parser
|
||
import Data.List
|
||
import Data.String
|
||
import TAP
|
||
|
||
public export
|
||
data Failure =
|
||
ParseError Parser.Error
|
||
| WrongResult String
|
||
| ExpectedFail String
|
||
|
||
export
|
||
ToInfo Parser.Error where
|
||
toInfo (LexError err) =
|
||
[("type", "LexError"), ("info", show err)]
|
||
toInfo (ParseError errs) =
|
||
("type", "ParseError") ::
|
||
map (bimap show show) ([1 .. length errs] `zip` toList errs)
|
||
|
||
export
|
||
ToInfo Failure where
|
||
toInfo (ParseError err) =
|
||
toInfo err
|
||
toInfo (WrongResult got) =
|
||
[("type", "WrongResult"), ("got", got)]
|
||
toInfo (ExpectedFail got) =
|
||
[("type", "ExpectedFail"), ("got", got)]
|
||
|
||
|
||
parameters {c : Bool} {auto _ : Show a} (grm : Grammar c a)
|
||
(inp : String)
|
||
parameters {default (ltrim inp) label : String}
|
||
parsesWith : (a -> Bool) -> Test
|
||
parsesWith p = test label $ do
|
||
res <- mapFst ParseError $ lexParseWith grm inp
|
||
unless (p res) $ Left $ WrongResult $ show res
|
||
|
||
parses : Test
|
||
parses = parsesWith $ const True
|
||
|
||
parsesAs : Eq a => a -> Test
|
||
parsesAs exp = parsesWith (== exp)
|
||
|
||
parameters {default "\{ltrim inp} # fails" label : String}
|
||
parseFails : Test
|
||
parseFails = test label $ do
|
||
either (const $ Right ()) (Left . ExpectedFail . show) $
|
||
lexParseWith grm inp
|
||
|
||
|
||
export
|
||
tests : Test
|
||
tests = "parser" :- [
|
||
"bound names" :- [
|
||
parsesAs bname "_" Nothing,
|
||
parsesAs bname "F" (Just "F"),
|
||
parseFails bname "a.b.c"
|
||
],
|
||
|
||
"names" :- [
|
||
parsesAs name "x"
|
||
(MakePName [<] "x"),
|
||
parsesAs name "Data.String.length"
|
||
(MakePName [< "Data", "String"] "length"),
|
||
parseFails name "_"
|
||
],
|
||
|
||
"dimensions" :- [
|
||
parsesAs dim "0" (K Zero),
|
||
parsesAs dim "1" (K One),
|
||
parsesAs dim "𝑖" (V "𝑖"),
|
||
parseFails dim "M.x",
|
||
parseFails dim "_"
|
||
],
|
||
|
||
"quantities" :- [
|
||
parsesAs qty "0" Zero,
|
||
parsesAs qty "1" One,
|
||
parsesAs qty "ω" Any,
|
||
parsesAs qty "#" Any,
|
||
parseFails qty "anythingElse",
|
||
parseFails qty "_"
|
||
],
|
||
|
||
"enum types" :- [
|
||
parsesAs term #"{}"# (Enum []),
|
||
parsesAs term #"{a}"# (Enum ["a"]),
|
||
parsesAs term #"{a,}"# (Enum ["a"]),
|
||
parsesAs term #"{a.b.c.d}"# (Enum ["a.b.c.d"]),
|
||
parsesAs term #"{"hel lo"}"# (Enum ["hel lo"]),
|
||
parsesAs term #"{a, b}"# (Enum ["a", "b"]),
|
||
parsesAs term #"{a, b,}"# (Enum ["a", "b"]),
|
||
parsesAs term #"{a, b, ","}"# (Enum ["a", "b", ","]),
|
||
parseFails term #"{,}"#
|
||
],
|
||
|
||
"tags" :- [
|
||
parsesAs term #" 'a "# (Tag "a"),
|
||
parsesAs term #" 'abc "# (Tag "abc"),
|
||
parsesAs term #" '"abc" "# (Tag "abc"),
|
||
parsesAs term #" '"a b c" "# (Tag "a b c"),
|
||
parsesAs term #" 'a b c "# (Tag "a" :@ V "b" :@ V "c")
|
||
{label = "'a b c # application to two args"}
|
||
],
|
||
|
||
"universes" :- [
|
||
parsesAs term "★₀" (TYPE 0),
|
||
parsesAs term "★1" (TYPE 1),
|
||
parsesAs term "★ 2" (TYPE 2),
|
||
parsesAs term "Type₃" (TYPE 3),
|
||
parsesAs term "Type4" (TYPE 4),
|
||
parsesAs term "Type 100" (TYPE 100),
|
||
parsesAs term "(Type 1000)" (TYPE 1000),
|
||
parseFails term "Type",
|
||
parseFails term "★"
|
||
],
|
||
|
||
"applications" :- [
|
||
parsesAs term "f" (V "f"),
|
||
parsesAs term "f.x.y" (V $ MakePName [< "f", "x"] "y"),
|
||
parsesAs term "f x" (V "f" :@ V "x"),
|
||
parsesAs term "f x y" (V "f" :@ V "x" :@ V "y"),
|
||
parsesAs term "(f x) y" (V "f" :@ V "x" :@ V "y"),
|
||
parsesAs term "f (g x)" (V "f" :@ (V "g" :@ V "x")),
|
||
parsesAs term "f (g x) y" (V "f" :@ (V "g" :@ V "x") :@ V "y"),
|
||
parsesAs term "f @p" (V "f" :% V "p"),
|
||
parsesAs term "f x @p y" (V "f" :@ V "x" :% V "p" :@ V "y")
|
||
],
|
||
|
||
"annotations" :- [
|
||
parsesAs term "f :: A" (V "f" :# V "A"),
|
||
parsesAs term "f ∷ A" (V "f" :# V "A"),
|
||
parsesAs term "f x y ∷ A B C"
|
||
((V "f" :@ V "x" :@ V "y") :#
|
||
(V "A" :@ V "B" :@ V "C")),
|
||
parsesAs term "Type 0 ∷ Type 1 ∷ Type 2"
|
||
(TYPE 0 :# (TYPE 1 :# TYPE 2))
|
||
],
|
||
|
||
"binders" :- [
|
||
parsesAs term "1.(x : A) → B x" $
|
||
Pi One (Just "x") (V "A") (V "B" :@ V "x"),
|
||
parsesAs term "1.(x : A) -> B x" $
|
||
Pi One (Just "x") (V "A") (V "B" :@ V "x"),
|
||
parsesAs term "ω.(x : A) → B x" $
|
||
Pi Any (Just "x") (V "A") (V "B" :@ V "x"),
|
||
parsesAs term "#.(x : A) -> B x" $
|
||
Pi Any (Just "x") (V "A") (V "B" :@ V "x"),
|
||
parseFails term "(x : A) → B x",
|
||
parsesAs term "1.A → B"
|
||
(Pi One Nothing (V "A") (V "B")),
|
||
parsesAs term "1.(List A) → List B"
|
||
(Pi One Nothing (V "List" :@ V "A") (V "List" :@ V "B")),
|
||
parseFails term "1.List A → List B",
|
||
parsesAs term "(x : A) × B x" $
|
||
Sig (Just "x") (V "A") (V "B" :@ V "x"),
|
||
parsesAs term "(x : A) ** B x" $
|
||
Sig (Just "x") (V "A") (V "B" :@ V "x"),
|
||
parseFails term "1.(x : A) × B x",
|
||
parsesAs term "A × B" $
|
||
Sig Nothing (V "A") (V "B"),
|
||
parsesAs term "A ** B" $
|
||
Sig Nothing (V "A") (V "B"),
|
||
parsesAs term "A × B × C" $
|
||
Sig Nothing (V "A") (Sig Nothing (V "B") (V "C")),
|
||
parsesAs term "(A × B) × C" $
|
||
Sig Nothing (Sig Nothing (V "A") (V "B")) (V "C")
|
||
],
|
||
|
||
"lambdas" :- [
|
||
parsesAs term "λ x ⇒ x" $ Lam (Just "x") (V "x"),
|
||
parsesAs term "λ x ⇒ x" $ Lam (Just "x") (V "x"),
|
||
parsesAs term "fun x => x" $ Lam (Just "x") (V "x"),
|
||
parsesAs term "δ i ⇒ x @i" $ DLam (Just "i") (V "x" :% V "i"),
|
||
parsesAs term "dfun i => x @i" $ DLam (Just "i") (V "x" :% V "i"),
|
||
parsesAs term "λ x y z ⇒ x z y" $
|
||
Lam (Just "x") $ Lam (Just "y") $ Lam (Just "z") $
|
||
V "x" :@ V "z" :@ V "y"
|
||
],
|
||
|
||
"pairs" :- [
|
||
parsesAs term "(x, y)" $
|
||
Pair (V "x") (V "y"),
|
||
parsesAs term "(x, y, z)" $
|
||
Pair (V "x") (Pair (V "y") (V "z")),
|
||
parsesAs term "((x, y), z)" $
|
||
Pair (Pair (V "x") (V "y")) (V "z"),
|
||
parsesAs term "(f x, g @y)" $
|
||
Pair (V "f" :@ V "x") (V "g" :% V "y"),
|
||
parsesAs term "((x : A) × B, 0.(x : C) → D)" $
|
||
Pair (Sig (Just "x") (V "A") (V "B"))
|
||
(Pi Zero (Just "x") (V "C") (V "D")),
|
||
parsesAs term "(λ x ⇒ x, δ i ⇒ e @i)" $
|
||
Pair (Lam (Just "x") (V "x"))
|
||
(DLam (Just "i") (V "e" :% V "i")),
|
||
parsesAs term "(x,)" (V "x"), -- i GUESS
|
||
parseFails term "(,y)",
|
||
parseFails term "(x,,y)"
|
||
],
|
||
|
||
"equality type" :- [
|
||
parsesAs term "Eq [i ⇒ A] s t" $
|
||
Eq (Just "i", V "A") (V "s") (V "t"),
|
||
parsesAs term "Eq [i ⇒ A B (C @i)] (f x y) (g y z)" $
|
||
Eq (Just "i", V "A" :@ V "B" :@ (V "C" :% V "i"))
|
||
(V "f" :@ V "x" :@ V "y") (V "g" :@ V "y" :@ V "z"),
|
||
parsesAs term "Eq [A] s t" $
|
||
Eq (Nothing, V "A") (V "s") (V "t"),
|
||
parsesAs term "s ≡ t : A" $
|
||
Eq (Nothing, V "A") (V "s") (V "t"),
|
||
parsesAs term "s == t : A" $
|
||
Eq (Nothing, V "A") (V "s") (V "t"),
|
||
parsesAs term "f x y ≡ g y z : A B C" $
|
||
Eq (Nothing, V "A" :@ V "B" :@ V "C")
|
||
(V "f" :@ V "x" :@ V "y") (V "g" :@ V "y" :@ V "z"),
|
||
parsesAs term "A × B ≡ A' × B' : ★₁" $
|
||
Eq (Nothing, TYPE 1)
|
||
(Sig Nothing (V "A") (V "B")) (Sig Nothing (V "A'") (V "B'")),
|
||
parseFails term "Eq",
|
||
parseFails term "Eq s t",
|
||
parseFails term "s ≡ t",
|
||
parseFails term "≡"
|
||
],
|
||
|
||
"naturals" :- [
|
||
parsesAs term "ℕ" Nat,
|
||
parsesAs term "Nat" Nat,
|
||
parsesAs term "zero" Zero,
|
||
parsesAs term "succ n" (Succ $ V "n"),
|
||
parsesAs term "3" (Succ (Succ (Succ Zero)) :# Nat),
|
||
parseFails term "succ"
|
||
],
|
||
|
||
"box" :- [
|
||
parsesAs term "[1.ℕ]" $ BOX One Nat,
|
||
parsesAs term "[ω. ℕ × ℕ]" $ BOX Any (Sig Nothing Nat Nat),
|
||
parsesAs term "[a]" $ Box (V "a"),
|
||
parsesAs term "[0]" $ Box (Zero :# Nat),
|
||
parsesAs term "[1]" $ Box (Succ Zero :# Nat)
|
||
],
|
||
|
||
"case" :- [
|
||
parsesAs term
|
||
"case1 f s return x ⇒ A x of { (l, r) ⇒ add l r }" $
|
||
Case One (V "f" :@ V "s")
|
||
(Just "x", V "A" :@ V "x")
|
||
(CasePair (Just "l", Just "r")
|
||
(V "add" :@ V "l" :@ V "r")),
|
||
parsesAs term
|
||
"case1 f s return x ⇒ A x of { (l, r) ⇒ add l r; }" $
|
||
Case One (V "f" :@ V "s")
|
||
(Just "x", V "A" :@ V "x")
|
||
(CasePair (Just "l", Just "r")
|
||
(V "add" :@ V "l" :@ V "r")),
|
||
parsesAs term
|
||
"case 1 . f s return x ⇒ A x of { (l, r) ⇒ add l r }" $
|
||
Case One (V "f" :@ V "s")
|
||
(Just "x", V "A" :@ V "x")
|
||
(CasePair (Just "l", Just "r")
|
||
(V "add" :@ V "l" :@ V "r")),
|
||
parsesAs term
|
||
"case1 t return A of { 'x ⇒ p; 'y ⇒ q; 'z ⇒ r }" $
|
||
Case One (V "t")
|
||
(Nothing, V "A")
|
||
(CaseEnum [("x", V "p"), ("y", V "q"), ("z", V "r")]),
|
||
parsesAs term "caseω t return A of {}" $
|
||
Case Any (V "t") (Nothing, V "A") (CaseEnum []),
|
||
parsesAs term "case# t return A of {}" $
|
||
Case Any (V "t") (Nothing, V "A") (CaseEnum []),
|
||
parsesAs term "caseω n return A of { 0 ⇒ a; succ n' ⇒ b }" $
|
||
Case Any (V "n") (Nothing, V "A") $
|
||
CaseNat (V "a") (Just "n'", Zero, Nothing, V "b"),
|
||
parsesAs term "caseω n return ℕ of { succ _, 1.ih ⇒ ih; zero ⇒ 0; }" $
|
||
Case Any (V "n") (Nothing, Nat) $
|
||
CaseNat (Zero :# Nat) (Nothing, One, Just "ih", V "ih"),
|
||
parseFails term "caseω n return A of { zero ⇒ a }",
|
||
parseFails term "caseω n return ℕ of { succ ⇒ 5 }"
|
||
],
|
||
|
||
"definitions" :- [
|
||
parsesAs definition "defω x : {a} × {b} = ('a, 'b)" $
|
||
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
|
||
(Pair (Tag "a") (Tag "b")),
|
||
parsesAs definition "defω x : {a} × {b} = ('a, 'b)" $
|
||
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
|
||
(Pair (Tag "a") (Tag "b")),
|
||
parsesAs definition "def# x : {a} ** {b} = ('a, 'b)" $
|
||
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
|
||
(Pair (Tag "a") (Tag "b")),
|
||
parsesAs definition "def ω.x : {a} × {b} = ('a, 'b)" $
|
||
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
|
||
(Pair (Tag "a") (Tag "b")),
|
||
parsesAs definition "def x : {a} × {b} = ('a, 'b)" $
|
||
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
|
||
(Pair (Tag "a") (Tag "b")),
|
||
parsesAs definition "def0 A : ★₀ = {a, b, c}" $
|
||
MkPDef Zero "A" (Just $ TYPE 0) (Enum ["a", "b", "c"])
|
||
],
|
||
|
||
"top level" :- [
|
||
parsesAs input "def0 A : ★₀ = {}; def0 B : ★₁ = A;" $
|
||
[PD $ PDef $ MkPDef Zero "A" (Just $ TYPE 0) (Enum []),
|
||
PD $ PDef $ MkPDef Zero "B" (Just $ TYPE 1) (V "A")],
|
||
parsesAs input "def0 A : ★₀ = {} def0 B : ★₁ = A" $
|
||
[PD $ PDef $ MkPDef Zero "A" (Just $ TYPE 0) (Enum []),
|
||
PD $ PDef $ MkPDef Zero "B" (Just $ TYPE 1) (V "A")],
|
||
parsesAs input "def0 A : ★₀ = {};;; def0 B : ★₁ = A" $
|
||
[PD $ PDef $ MkPDef Zero "A" (Just $ TYPE 0) (Enum []),
|
||
PD $ PDef $ MkPDef Zero "B" (Just $ TYPE 1) (V "A")],
|
||
parsesAs input "" [] {label = "[empty input]"},
|
||
parsesAs input ";;;;;;;;;;;;;;;;;;;;;;;;;;" [],
|
||
parsesAs input "namespace a {}" [PD $ PNs $ MkPNamespace [< "a"] []],
|
||
parsesAs input "namespace a.b.c {}"
|
||
[PD $ PNs $ MkPNamespace [< "a", "b", "c"] []],
|
||
parsesAs input "namespace a {namespace b {}}"
|
||
[PD $ PNs $ MkPNamespace [< "a"] [PNs $ MkPNamespace [< "b"] []]],
|
||
parsesAs input "namespace a {def x = 't ∷ {t}}"
|
||
[PD $ PNs $ MkPNamespace [< "a"]
|
||
[PDef $ MkPDef Any "x" Nothing (Tag "t" :# Enum ["t"])]],
|
||
parsesAs input "namespace a {def x = 't ∷ {t}} def y = a.x"
|
||
[PD $ PNs $ MkPNamespace [< "a"]
|
||
[PDef $ MkPDef Any "x" Nothing (Tag "t" :# Enum ["t"])],
|
||
PD $ PDef $ MkPDef Any "y" Nothing (V $ MakePName [< "a"] "x")],
|
||
parsesAs input #" load "a.quox"; def b = a.b "#
|
||
[PLoad "a.quox",
|
||
PD $ PDef $ MkPDef Any "b" Nothing (V $ MakePName [< "a"] "b")]
|
||
]
|
||
]
|