quox/src/Quox/Reduce.idr
2022-05-02 22:38:37 +02:00

130 lines
4.6 KiB
Idris

module Quox.Reduce
import public Quox.Syntax
%default total
public export
data IsRedexT : Term d n -> Type where
IsUpsilonT : IsRedexT $ E (_ :# _)
IsCloT : IsRedexT $ CloT {}
IsDCloT : IsRedexT $ DCloT {}
public export %inline
NotRedexT : Term d n -> Type
NotRedexT = Not . IsRedexT
public export
data IsRedexE : Elim d n -> Type where
IsUpsilonE : IsRedexE $ E _ :# _
IsBetaLam : IsRedexE $ (Lam {} :# Pi {}) :@ _
IsCloE : IsRedexE $ CloE {}
IsDCloE : IsRedexE $ DCloE {}
public export %inline
NotRedexE : Elim d n -> Type
NotRedexE = Not . IsRedexE
export %inline
isRedexT : (t : Term d n) -> Dec (IsRedexT t)
isRedexT (E (_ :# _)) = Yes IsUpsilonT
isRedexT (CloT {}) = Yes IsCloT
isRedexT (DCloT {}) = Yes IsDCloT
isRedexT (TYPE _) = No $ \x => case x of {}
isRedexT (Pi {}) = No $ \x => case x of {}
isRedexT (Lam {}) = No $ \x => case x of {}
isRedexT (E (F _)) = No $ \x => case x of {}
isRedexT (E (B _)) = No $ \x => case x of {}
isRedexT (E (_ :@ _)) = No $ \x => case x of {}
isRedexT (E (CloE {})) = No $ \x => case x of {}
isRedexT (E (DCloE {})) = No $ \x => case x of {}
export %inline
isRedexE : (e : Elim d n) -> Dec (IsRedexE e)
isRedexE (E _ :# _) = Yes IsUpsilonE
isRedexE ((Lam {} :# Pi {}) :@ _) = Yes IsBetaLam
isRedexE (CloE {}) = Yes IsCloE
isRedexE (DCloE {}) = Yes IsDCloE
isRedexE (F x) = No $ \x => case x of {}
isRedexE (B i) = No $ \x => case x of {}
isRedexE (F _ :@ _) = No $ \x => case x of {}
isRedexE (B _ :@ _) = No $ \x => case x of {}
isRedexE (_ :@ _ :@ _) = No $ \x => case x of {}
isRedexE ((TYPE _ :# _) :@ _) = No $ \x => case x of {}
isRedexE ((Pi {} :# _) :@ _) = No $ \x => case x of {}
isRedexE ((Lam {} :# TYPE _) :@ _) = No $ \x => case x of {}
isRedexE ((Lam {} :# Lam {}) :@ _) = No $ \x => case x of {}
isRedexE ((Lam {} :# E _) :@ _) = No $ \x => case x of {}
isRedexE ((Lam {} :# CloT {}) :@ _) = No $ \x => case x of {}
isRedexE ((Lam {} :# DCloT {}) :@ _) = No $ \x => case x of {}
isRedexE ((E _ :# _) :@ _) = No $ \x => case x of {}
isRedexE ((CloT {} :# _) :@ _) = No $ \x => case x of {}
isRedexE ((DCloT {} :# _) :@ _) = No $ \x => case x of {}
isRedexE (CloE {} :@ _) = No $ \x => case x of {}
isRedexE (DCloE {} :@ _) = No $ \x => case x of {}
isRedexE (TYPE _ :# _) = No $ \x => case x of {}
isRedexE (Pi {} :# _) = No $ \x => case x of {}
isRedexE (Lam {} :# _) = No $ \x => case x of {}
isRedexE (CloT {} :# _) = No $ \x => case x of {}
isRedexE (DCloT {} :# _) = No $ \x => case x of {}
public export %inline
RedexTerm : Nat -> Nat -> Type
RedexTerm d n = Subset (Term d n) IsRedexT
public export %inline
NonRedexTerm : Nat -> Nat -> Type
NonRedexTerm d n = Subset (Term d n) NotRedexT
public export %inline
RedexElim : Nat -> Nat -> Type
RedexElim d n = Subset (Elim d n) IsRedexE
public export %inline
NonRedexElim : Nat -> Nat -> Type
NonRedexElim d n = Subset (Elim d n) NotRedexE
||| substitute a term with annotation for the bound variable of a `ScopeTerm`
export %inline
substScope : (arg, argTy : Term d n) -> (body : ScopeTerm d n) -> Term d n
substScope arg argTy (TUsed body) = body // one (arg :# argTy)
substScope arg argTy (TUnused body) = body
export %inline
stepT' : (s : Term d n) -> IsRedexT s -> Term d n
stepT' (E (s :# _)) IsUpsilonT = s
stepT' (CloT s th) IsCloT = pushSubstsTWith' id th s
stepT' (DCloT s th) IsDCloT = pushSubstsTWith' th id s
export %inline
stepT : (s : Term d n) -> Either (NotRedexT s) (Term d n)
stepT s = case isRedexT s of Yes y => Right $ stepT' s y; No n => Left n
export %inline
stepE' : (e : Elim d n) -> IsRedexE e -> Elim d n
stepE' (E e :# _) IsUpsilonE = e
stepE' ((Lam {body, _} :# Pi {arg, res, _}) :@ s) IsBetaLam =
substScope s arg body :# substScope s arg res
stepE' (CloE e th) IsCloE = pushSubstsEWith' id th e
stepE' (DCloE e th) IsDCloE = pushSubstsEWith' th id e
export %inline
stepE : (e : Elim d n) -> Either (NotRedexE e) (Elim d n)
stepE e = case isRedexE e of Yes y => Right $ stepE' e y; No n => Left n
export covering
whnfT : Term d n -> NonRedexTerm d n
whnfT s = case stepT s of
Right s' => whnfT s'
Left done => Element s done
export covering
whnfE : Elim d n -> NonRedexElim d n
whnfE e = case stepE e of
Right e' => whnfE e'
Left done => Element e done