quox/tests/Tests/Parser.idr

277 lines
9.2 KiB
Idris
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Tests.Parser
import Quox.Parser
import Data.List
import Data.String
import TAP
public export
data Failure =
ParseError Parser.Error
| WrongResult String
| ExpectedFail String
export
ToInfo Parser.Error where
toInfo (LexError err) =
[("type", "LexError"), ("info", show err)]
toInfo (ParseError errs) =
("type", "ParseError") ::
map (bimap show show) ([1 .. length errs] `zip` toList errs)
export
ToInfo Failure where
toInfo (ParseError err) =
toInfo err
toInfo (WrongResult got) =
[("type", "WrongResult"), ("got", got)]
toInfo (ExpectedFail got) =
[("type", "ExpectedFail"), ("got", got)]
parameters {c : Bool} {auto _ : Show a} (grm : Grammar c a)
(inp : String)
parameters {default (ltrim inp) label : String}
parsesWith : (a -> Bool) -> Test
parsesWith p = test label $ do
res <- mapFst ParseError $ lexParseWith grm inp
unless (p res) $ Left $ WrongResult $ show res
parses : Test
parses = parsesWith $ const True
parsesAs : Eq a => a -> Test
parsesAs exp = parsesWith (== exp)
parameters {default "\{ltrim inp} # fails" label : String}
parseFails : Test
parseFails = test label $ do
either (const $ Right ()) (Left . ExpectedFail . show) $
lexParseWith grm inp
export
tests : Test
tests = "parser" :- [
"bound names" :- [
parsesAs bname "_" Nothing,
parsesAs bname "F" (Just "F"),
parseFails bname "a.b.c"
],
"names" :- [
parsesAs name "x"
(MakePName [<] "x"),
parsesAs name "Data.String.length"
(MakePName [< "Data", "String"] "length"),
parseFails name "_"
],
"dimensions" :- [
parsesAs dim "0" (K Zero),
parsesAs dim "1" (K One),
parsesAs dim "ι" (V "ι"),
parsesAs dim "(0)" (K Zero),
parseFails dim "M.x",
parseFails dim "_"
],
"quantities" :- [
parsesAs qty "0" Zero,
parsesAs qty "1" One,
parsesAs qty "ω" Any,
parsesAs qty "#" Any,
parsesAs qty "(#)" Any,
parseFails qty "anythingElse",
parseFails qty "_"
],
"enum types" :- [
parsesAs term #"{}"# (Enum []),
parsesAs term #"{a}"# (Enum ["a"]),
parsesAs term #"{a,}"# (Enum ["a"]),
parsesAs term #"{a.b.c.d}"# (Enum ["a.b.c.d"]),
parsesAs term #"{"hel lo"}"# (Enum ["hel lo"]),
parsesAs term #"{a, b}"# (Enum ["a", "b"]),
parsesAs term #"{a, b,}"# (Enum ["a", "b"]),
parsesAs term #"{a, b, ","}"# (Enum ["a", "b", ","]),
parseFails term #"{,}"#
],
"tags" :- [
parsesAs term #" 'a "# (Tag "a"),
parsesAs term #" 'abc "# (Tag "abc"),
parsesAs term #" '"abc" "# (Tag "abc"),
parsesAs term #" '"a b c" "# (Tag "a b c"),
parsesAs term #" 'a b c "# (Tag "a" :@ V "b" :@ V "c")
{label = "'a b c # application to two args"}
],
"universes" :- [
parsesAs term "★₀" (TYPE 0),
parsesAs term "★1" (TYPE 1),
parsesAs term "★ 2" (TYPE 2),
parsesAs term "Type₃" (TYPE 3),
parsesAs term "Type4" (TYPE 4),
parsesAs term "Type 100" (TYPE 100),
parsesAs term "(Type 1000)" (TYPE 1000),
parseFails term "Type",
parseFails term ""
],
"applications" :- [
parsesAs term "f" (V "f"),
parsesAs term "f.x.y" (V $ MakePName [< "f", "x"] "y"),
parsesAs term "f x" (V "f" :@ V "x"),
parsesAs term "f x y" (V "f" :@ V "x" :@ V "y"),
parsesAs term "(f x) y" (V "f" :@ V "x" :@ V "y"),
parsesAs term "f (g x)" (V "f" :@ (V "g" :@ V "x")),
parsesAs term "f (g x) y" (V "f" :@ (V "g" :@ V "x") :@ V "y"),
parsesAs term "f @p" (V "f" :% V "p"),
parsesAs term "f x @p y" (V "f" :@ V "x" :% V "p" :@ V "y")
],
"annotations" :- [
parsesAs term "f :: A" (V "f" :# V "A"),
parsesAs term "f ∷ A" (V "f" :# V "A"),
parsesAs term "f x y ∷ A B C"
((V "f" :@ V "x" :@ V "y") :#
(V "A" :@ V "B" :@ V "C")),
parsesAs term "Type 0 ∷ Type 1 ∷ Type 2"
(TYPE 0 :# (TYPE 1 :# TYPE 2))
],
"binders" :- [
parsesAs term "(1.x : A) → B x" $
Pi One (Just "x") (V "A") (V "B" :@ V "x"),
parsesAs term "(1.x : A) -> B x" $
Pi One (Just "x") (V "A") (V "B" :@ V "x"),
parsesAs term "(ω.x : A) → B x" $
Pi Any (Just "x") (V "A") (V "B" :@ V "x"),
parsesAs term "(#.x : A) -> B x" $
Pi Any (Just "x") (V "A") (V "B" :@ V "x"),
parseFails term "(x : A) → B x",
parseFails term "(1 ω.x : A) → B x",
parsesAs term "(x : A) × B x" $
Sig (Just "x") (V "A") (V "B" :@ V "x"),
parsesAs term "(x : A) ** B x" $
Sig (Just "x") (V "A") (V "B" :@ V "x"),
parseFails term "(1.x : A) × B x"
],
"lambdas" :- [
parsesAs term "λ x ⇒ x" $ Lam (Just "x") (V "x"),
parsesAs term "λ x ⇒ x" $ Lam (Just "x") (V "x"),
parsesAs term "fun x => x" $ Lam (Just "x") (V "x"),
parsesAs term "δ i ⇒ x @i" $ DLam (Just "i") (V "x" :% V "i"),
parsesAs term "dfun i => x @i" $ DLam (Just "i") (V "x" :% V "i"),
parsesAs term "λ x y z ⇒ x z y" $
Lam (Just "x") $ Lam (Just "y") $ Lam (Just "z") $
V "x" :@ V "z" :@ V "y"
],
"pairs" :- [
parsesAs term "(x, y)" $
Pair (V "x") (V "y"),
parsesAs term "(x, y, z)" $
Pair (V "x") (Pair (V "y") (V "z")),
parsesAs term "((x, y), z)" $
Pair (Pair (V "x") (V "y")) (V "z"),
parsesAs term "(f x, g @y)" $
Pair (V "f" :@ V "x") (V "g" :% V "y"),
parsesAs term "((x : A) × B, (0.x : C) → D)" $
Pair (Sig (Just "x") (V "A") (V "B"))
(Pi Zero (Just "x") (V "C") (V "D")),
parsesAs term "(λ x ⇒ x, δ i ⇒ e @i)" $
Pair (Lam (Just "x") (V "x"))
(DLam (Just "i") (V "e" :% V "i")),
parsesAs term "(x,)" (V "x"), -- i GUESS
parseFails term "(,y)",
parseFails term "(x,,y)"
],
"equality type" :- [
parsesAs term "Eq [i ⇒ A] s t" $
Eq (Just "i", V "A") (V "s") (V "t"),
parsesAs term "Eq [i ⇒ A B (C @i)] (f x y) (g y z)" $
Eq (Just "i", V "A" :@ V "B" :@ (V "C" :% V "i"))
(V "f" :@ V "x" :@ V "y") (V "g" :@ V "y" :@ V "z"),
parsesAs term "Eq [A] s t" $
Eq (Nothing, V "A") (V "s") (V "t"),
parsesAs term "s ≡ t : A" $
Eq (Nothing, V "A") (V "s") (V "t"),
parsesAs term "s == t : A" $
Eq (Nothing, V "A") (V "s") (V "t"),
parsesAs term "f x y ≡ g y z : A B C" $
Eq (Nothing, V "A" :@ V "B" :@ V "C")
(V "f" :@ V "x" :@ V "y") (V "g" :@ V "y" :@ V "z"),
parseFails term "Eq",
parseFails term "Eq s t",
parseFails term "s ≡ t",
parseFails term ""
],
"case" :- [
parsesAs term
"case1 f s return x ⇒ A x of { (l, r) ⇒ add l r }" $
Case One (V "f" :@ V "s")
(Just "x", V "A" :@ V "x")
(CasePair (Just "l", Just "r")
(V "add" :@ V "l" :@ V "r")),
parsesAs term
"case1 f s return x ⇒ A x of { (l, r) ⇒ add l r; }" $
Case One (V "f" :@ V "s")
(Just "x", V "A" :@ V "x")
(CasePair (Just "l", Just "r")
(V "add" :@ V "l" :@ V "r")),
parsesAs term
"case 1 . f s return x ⇒ A x of { (l, r) ⇒ add l r }" $
Case One (V "f" :@ V "s")
(Just "x", V "A" :@ V "x")
(CasePair (Just "l", Just "r")
(V "add" :@ V "l" :@ V "r")),
parsesAs term
"case1 t return A of { 'x ⇒ p; 'y ⇒ q; 'z ⇒ r }" $
Case One (V "t")
(Nothing, V "A")
(CaseEnum [("x", V "p"), ("y", V "q"), ("z", V "r")]),
parsesAs term "caseω t return A of {}" $
Case Any (V "t") (Nothing, V "A") (CaseEnum []),
parsesAs term "case# t return A of {}" $
Case Any (V "t") (Nothing, V "A") (CaseEnum [])
],
"definitions" :- [
parsesAs definition "defω x : (_: {a}) × {b} = ('a, 'b)" $
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
(Pair (Tag "a") (Tag "b")),
parsesAs definition "defω x : (_: {a}) × {b} = ('a, 'b)" $
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
(Pair (Tag "a") (Tag "b")),
parsesAs definition "def# x : (_: {a}) ** {b} = ('a, 'b)" $
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
(Pair (Tag "a") (Tag "b")),
parsesAs definition "def ω.x : (_: {a}) × {b} = ('a, 'b)" $
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
(Pair (Tag "a") (Tag "b")),
parsesAs definition "def x : (_: {a}) × {b} = ('a, 'b)" $
MkPDef Any "x" (Just $ Sig Nothing (Enum ["a"]) (Enum ["b"]))
(Pair (Tag "a") (Tag "b")),
parsesAs definition "def0 A : ★₀ = {a, b, c}" $
MkPDef Zero "A" (Just $ TYPE 0) (Enum ["a", "b", "c"])
],
"top level" :- [
parsesAs input "def0 A : ★₀ = {}; def0 B : ★₁ = A;" $
[PD $ PDef $ MkPDef Zero "A" (Just $ TYPE 0) (Enum []),
PD $ PDef $ MkPDef Zero "B" (Just $ TYPE 1) (V "A")],
parsesAs input "def0 A : ★₀ = {} def0 B : ★₁ = A" $
[PD $ PDef $ MkPDef Zero "A" (Just $ TYPE 0) (Enum []),
PD $ PDef $ MkPDef Zero "B" (Just $ TYPE 1) (V "A")],
parsesAs input "def0 A : ★₀ = {};;; def0 B : ★₁ = A" $
[PD $ PDef $ MkPDef Zero "A" (Just $ TYPE 0) (Enum []),
PD $ PDef $ MkPDef Zero "B" (Just $ TYPE 1) (V "A")],
parsesAs input "" [] {label = "[empty input]"},
parsesAs input ";;;;;;;;;;;;;;;;;;;;;;;;;;" []
]
]