quox/lib/Quox/NatExtra.idr
2023-06-23 18:32:17 +02:00

86 lines
2.2 KiB
Idris

module Quox.NatExtra
import public Data.Nat
import public Data.Nat.Views
import Data.Nat.Division
import Data.SnocList
import Data.Vect
import Syntax.PreorderReasoning
%default total
public export
data LTE' : Nat -> Nat -> Type where
LTERefl : LTE' n n
LTESuccR : LTE' m n -> LTE' m (S n)
%builtin Natural LTE'
public export %hint
lteZero' : {n : Nat} -> LTE' 0 n
lteZero' {n = 0} = LTERefl
lteZero' {n = S n} = LTESuccR lteZero'
public export %hint
lteSucc' : LTE' m n -> LTE' (S m) (S n)
lteSucc' LTERefl = LTERefl
lteSucc' (LTESuccR p) = LTESuccR $ lteSucc' p
public export
fromLte : {n : Nat} -> LTE m n -> LTE' m n
fromLte LTEZero = lteZero'
fromLte (LTESucc p) = lteSucc' $ fromLte p
public export
toLte : {n : Nat} -> m `LTE'` n -> m `LTE` n
toLte LTERefl = reflexive
toLte (LTESuccR p) = lteSuccRight (toLte p)
private
0 baseNZ : n `GTE` 2 => NonZero n
baseNZ @{LTESucc _} = SIsNonZero
parameters {base : Nat} {auto 0 _ : base `GTE` 2} (chars : Vect base Char)
private
showAtBase' : List Char -> Nat -> List Char
showAtBase' acc 0 = acc
showAtBase' acc k =
let dig = natToFinLT (modNatNZ k base baseNZ) @{boundModNatNZ {}} in
showAtBase' (index dig chars :: acc)
(assert_smaller k $ divNatNZ k base baseNZ)
export
showAtBase : Nat -> String
showAtBase = pack . showAtBase' []
export
showHex : Nat -> String
showHex = showAtBase $ fromList $ unpack "0123456789ABCDEF"
export
0 notEvenOdd : (a, b : Nat) -> Not (a + a = S (b + b))
notEvenOdd 0 b prf = absurd prf
notEvenOdd (S a) b prf =
notEvenOdd b a $ Calc $
|~ b + b
~~ a + S a ..<(inj S prf)
~~ S (a + a) ..<(plusSuccRightSucc {})
export
0 doubleInj : (m, n : Nat) -> m + m = n + n -> m = n
doubleInj 0 0 _ = Refl
doubleInj (S m) (S n) prf =
cong S $ doubleInj m n $
inj S $ Calc $
|~ S (m + m)
~~ m + S m ...(plusSuccRightSucc {})
~~ n + S n ...(inj S prf)
~~ S (n + n) ..<(plusSuccRightSucc {})
export
0 halfDouble : (n : Nat) -> half (n + n) = HalfEven n
halfDouble n with (half (n + n)) | (n + n) proof nn
_ | HalfOdd k | S (k + k) = void $ notEvenOdd n k nn
_ | HalfEven k | k + k = rewrite doubleInj n k nn in Refl