241 lines
6.9 KiB
Idris
241 lines
6.9 KiB
Idris
module Quox.Syntax.Shift
|
||
|
||
import public Quox.Syntax.Var
|
||
import Quox.Pretty
|
||
|
||
import Data.Nat
|
||
import Data.So
|
||
|
||
%default total
|
||
|
||
|
||
||| represents the difference between a smaller scope and a larger one.
|
||
public export
|
||
data Shift : (from, to : Nat) -> Type where
|
||
SZ : Shift from from
|
||
SS : Shift from to -> Shift from (S to)
|
||
%name Shift by, bz
|
||
%builtin Natural Shift
|
||
|
||
public export
|
||
(.nat) : Shift from to -> Nat
|
||
(SZ).nat = Z
|
||
(SS by).nat = S by.nat
|
||
%transform "Shift.(.nat)" Shift.(.nat) = believe_me
|
||
|
||
public export Cast (Shift from to) Nat where cast = (.nat)
|
||
public export Cast (Shift from to) Integer where cast = cast . cast {to = Nat}
|
||
|
||
export Eq (Shift from to) where (==) = (==) `on` (.nat)
|
||
export Ord (Shift from to) where compare = compare `on` (.nat)
|
||
|
||
|
||
||| shift equivalence, ignoring indices
|
||
public export
|
||
data Eqv : Shift from1 to1 -> Shift from2 to2 -> Type where
|
||
EqSZ : SZ `Eqv` SZ
|
||
EqSS : by `Eqv` bz -> SS by `Eqv` SS bz
|
||
%name Shift.Eqv e
|
||
|
||
using (by : Shift from to, bz : Shift from to)
|
||
||| two equivalent shifts are equal if they have the same indices.
|
||
export
|
||
0 fromEqv : by `Eqv` bz -> by = bz
|
||
fromEqv EqSZ = Refl
|
||
fromEqv (EqSS e) = cong SS $ fromEqv e
|
||
|
||
||| two equal shifts are equivalent.
|
||
export
|
||
0 toEqv : by = bz -> by `Eqv` bz
|
||
toEqv Refl {by = SZ} = EqSZ
|
||
toEqv Refl {by = (SS by)} = EqSS $ toEqv Refl
|
||
|
||
|
||
export
|
||
cmpLen : Shift from1 to -> Shift from2 to -> Either Ordering (from1 = from2)
|
||
cmpLen SZ SZ = Right Refl
|
||
cmpLen SZ (SS by) = Left LT
|
||
cmpLen (SS by) SZ = Left GT
|
||
cmpLen (SS by) (SS bz) = cmpLen by bz
|
||
|
||
export
|
||
0 shiftDiff : (by : Shift from to) -> to = by.nat + from
|
||
shiftDiff SZ = Refl
|
||
shiftDiff (SS by) = cong S $ shiftDiff by
|
||
|
||
export
|
||
0 shiftVarLT : (by : Shift from to) -> (i : Var from) ->
|
||
by.nat + i.nat `LT` to
|
||
shiftVarLT by i =
|
||
rewrite plusSuccRightSucc by.nat i.nat in
|
||
transitive
|
||
(plusLteMonotoneLeft by.nat (S i.nat) from (toNatLT i))
|
||
(replace {p=(`LTE` to)} (shiftDiff by) reflexive)
|
||
|
||
|
||
public export
|
||
fromNat : (by : Nat) -> Shift from (by + from)
|
||
fromNat Z = SZ
|
||
fromNat (S by) = SS $ fromNat by
|
||
%transform "Shift.fromNat" Shift.fromNat x = believe_me x
|
||
|
||
public export
|
||
fromNat0 : (by : Nat) -> Shift 0 by
|
||
fromNat0 by = rewrite sym $ plusZeroRightNeutral by in fromNat by
|
||
|
||
export
|
||
0 fromToNat : (by : Shift from to) -> by `Eqv` fromNat by.nat {from}
|
||
fromToNat SZ = EqSZ
|
||
fromToNat (SS by) = EqSS $ fromToNat by
|
||
|
||
export
|
||
0 toFromNat : (from, by : Nat) -> by = (fromNat by {from}).nat
|
||
toFromNat from 0 = Refl
|
||
toFromNat from (S k) = cong S $ toFromNat from k
|
||
|
||
export
|
||
0 toNatInj' : (by : Shift from1 to1) -> (bz : Shift from2 to2) ->
|
||
by.nat = bz.nat -> by `Eqv` bz
|
||
toNatInj' SZ SZ prf = EqSZ
|
||
toNatInj' (SS by) (SS bz) prf = EqSS $ toNatInj' by bz $ injective prf
|
||
toNatInj' (SS by) SZ Refl impossible
|
||
|
||
export
|
||
0 toNatInj : {by, bz : Shift from to} -> by.nat = bz.nat -> by = bz
|
||
toNatInj {by, bz} e = fromEqv $ toNatInj' by bz e
|
||
|
||
export %inline
|
||
Injective Shift.(.nat) where injective eq = irrelevantEq $ toNatInj eq
|
||
|
||
|
||
public export
|
||
ssDown : Shift (S from) to -> Shift from to
|
||
ssDown SZ = SS SZ
|
||
ssDown (SS by) = SS (ssDown by)
|
||
|
||
export
|
||
0 ssDownEqv : (by : Shift (S from) to) -> ssDown by `Eqv` SS by
|
||
ssDownEqv SZ = EqSS EqSZ
|
||
ssDownEqv (SS by) = EqSS $ ssDownEqv by
|
||
|
||
private %inline
|
||
ssDownViaNat : Shift (S from) to -> Shift from to
|
||
ssDownViaNat by =
|
||
rewrite shiftDiff by in
|
||
rewrite sym $ plusSuccRightSucc by.nat from in
|
||
fromNat $ S by.nat
|
||
|
||
%transform "Shift.ssDown" ssDown = ssDownViaNat
|
||
|
||
|
||
public export
|
||
weak : (s : Nat) -> Shift from to -> Shift (s + from) (s + to)
|
||
weak s SZ = SZ
|
||
weak s (SS by) {to = S to} =
|
||
rewrite sym $ plusSuccRightSucc s to in
|
||
SS $ weak s by
|
||
|
||
private
|
||
weakViaNat : (s : Nat) -> Shift from to -> Shift (s + from) (s + to)
|
||
weakViaNat s by =
|
||
rewrite shiftDiff by in
|
||
rewrite plusAssociative s by.nat from in
|
||
rewrite plusCommutative s by.nat in
|
||
rewrite sym $ plusAssociative by.nat s from in
|
||
fromNat by.nat
|
||
|
||
%transform "Shift.weak" Shift.weak = weakViaNat
|
||
|
||
|
||
public export
|
||
shift : Shift from to -> Var from -> Var to
|
||
shift SZ i = i
|
||
shift (SS by) i = VS $ shift by i
|
||
|
||
private %inline
|
||
shiftViaNat' : (by : Shift from to) -> (i : Var from) ->
|
||
(0 p : by.nat + i.nat `LT` to) -> Var to
|
||
shiftViaNat' by i p = V $ by.nat + i.nat
|
||
|
||
private %inline
|
||
shiftViaNat : Shift from to -> Var from -> Var to
|
||
shiftViaNat by i = shiftViaNat' by i $ shiftVarLT by i
|
||
|
||
private
|
||
0 shiftViaNatCorrect : (by : Shift from to) -> (i : Var from) ->
|
||
(0 p : by.nat + i.nat `LT` to) ->
|
||
shiftViaNat' by i p = shift by i
|
||
shiftViaNatCorrect SZ i (LTESucc p) = fromToNat i _
|
||
shiftViaNatCorrect (SS by) i (LTESucc p) = cong VS $ shiftViaNatCorrect by i p
|
||
|
||
%transform "Shift.shift" shift = shiftViaNat
|
||
|
||
|
||
public export
|
||
(.) : Shift from mid -> Shift mid to -> Shift from to
|
||
by . SZ = by
|
||
by . SS bz = SS $ by . bz
|
||
|
||
private
|
||
0 compNatProof : (by : Shift from mid) -> (bz : Shift mid to) ->
|
||
to = by.nat + bz.nat + from
|
||
compNatProof by bz =
|
||
trans (shiftDiff bz) $
|
||
trans (cong (bz.nat +) (shiftDiff by)) $
|
||
trans (plusAssociative bz.nat by.nat from) $
|
||
cong (+ from) (plusCommutative bz.nat by.nat)
|
||
|
||
private %inline
|
||
compViaNat' : (by : Shift from mid) -> (bz : Shift mid to) ->
|
||
Shift from (by.nat + bz.nat + from)
|
||
compViaNat' by bz = fromNat $ by.nat + bz.nat
|
||
|
||
private %inline
|
||
compViaNat : (by : Shift from mid) -> (bz : Shift mid to) -> Shift from to
|
||
compViaNat by bz = rewrite compNatProof by bz in compViaNat' by bz
|
||
|
||
private
|
||
0 compViaNatCorrect : (by : Shift from mid) -> (bz : Shift mid to) ->
|
||
by . bz `Eqv` compViaNat' by bz
|
||
compViaNatCorrect by SZ =
|
||
rewrite plusZeroRightNeutral by.nat in fromToNat by
|
||
compViaNatCorrect by (SS bz) =
|
||
rewrite sym $ plusSuccRightSucc by.nat bz.nat in
|
||
EqSS $ compViaNatCorrect by bz
|
||
|
||
%transform "Shift.(.)" Shift.(.) = compViaNat
|
||
|
||
|
||
||| `prettyShift bnd unicode prec by` pretty-prints the shift `by`, with the
|
||
||| following arguments:
|
||
|||
|
||
||| * `by : Shift from to`
|
||
||| * `bnd : HL` is the highlight used for bound variables of this kind
|
||
||| * `unicode : Bool` is whether to use unicode characters in the output
|
||
||| * `prec : PPrec` is the surrounding precedence level
|
||
export
|
||
prettyShift : Pretty.HasEnv m => (bnd : HL) -> Shift from to -> m (Doc HL)
|
||
prettyShift bnd by =
|
||
parensIfM Outer $ hsep $
|
||
[hl bnd !(ifUnicode "𝑖" "i"), hl Delim !(ifUnicode "≔" ":="),
|
||
hl bnd $ !(ifUnicode "𝑖+" "i+") <+> pretty by.nat]
|
||
|
||
||| prints using the `TVar` highlight for variables
|
||
export PrettyHL (Shift from to) where prettyM = prettyShift TVar
|
||
|
||
|
||
infixl 8 //
|
||
public export
|
||
interface CanShift f where
|
||
(//) : f from -> Shift from to -> f to
|
||
|
||
export %inline
|
||
CanShift Var where i // by = shift by i
|
||
|
||
namespace CanShift
|
||
public export %inline
|
||
[Map] (Functor f, CanShift tm) => CanShift (f . tm) where
|
||
x // by = map (// by) x
|
||
|
||
public export %inline
|
||
[Const] CanShift (\_ => a) where x // _ = x
|