312 lines
10 KiB
Idris
312 lines
10 KiB
Idris
module Quox.Syntax.Term.Reduce
|
|
|
|
import Quox.Syntax.Term.Base
|
|
import Quox.Syntax.Term.Subst
|
|
|
|
%default total
|
|
|
|
|
|
mutual
|
|
public export
|
|
data NotCloT : Term {} -> Type where
|
|
NCTYPE : NotCloT $ TYPE _
|
|
NCPi : NotCloT $ Pi {}
|
|
NCLam : NotCloT $ Lam {}
|
|
NCE : NotCloE e -> NotCloT $ E e
|
|
|
|
public export
|
|
data NotCloE : Elim {} -> Type where
|
|
NCF : NotCloE $ F _
|
|
NCB : NotCloE $ B _
|
|
NCApp : NotCloE $ _ :@ _
|
|
NCAnn : NotCloE $ _ :# _
|
|
|
|
mutual
|
|
export
|
|
notCloT : (t : Term {}) -> Dec (NotCloT t)
|
|
notCloT (TYPE _) = Yes NCTYPE
|
|
notCloT (Pi {}) = Yes NCPi
|
|
notCloT (Lam {}) = Yes NCLam
|
|
notCloT (E e) with (notCloE e)
|
|
notCloT (E e) | Yes nc = Yes $ NCE nc
|
|
notCloT (E e) | No c = No $ \case NCE nc => c nc
|
|
notCloT (CloT {}) = No $ \case _ impossible
|
|
notCloT (DCloT {}) = No $ \case _ impossible
|
|
|
|
export
|
|
notCloE : (e : Elim {}) -> Dec (NotCloE e)
|
|
notCloE (F _) = Yes NCF
|
|
notCloE (B _) = Yes NCB
|
|
notCloE (_ :@ _) = Yes NCApp
|
|
notCloE (_ :# _) = Yes NCAnn
|
|
notCloE (CloE {}) = No $ \case _ impossible
|
|
notCloE (DCloE {}) = No $ \case _ impossible
|
|
|
|
||| a term which is not a top level closure
|
|
public export
|
|
NotCloTerm : Type -> Nat -> Nat -> Type
|
|
NotCloTerm q d n = Subset (Term q d n) NotCloT
|
|
|
|
||| an elimination which is not a top level closure
|
|
public export
|
|
NotCloElim : Type -> Nat -> Nat -> Type
|
|
NotCloElim q d n = Subset (Elim q d n) NotCloE
|
|
|
|
public export %inline
|
|
ncloT : (t : Term q d n) -> (0 _ : NotCloT t) => NotCloTerm q d n
|
|
ncloT t @{p} = Element t p
|
|
|
|
public export %inline
|
|
ncloE : (e : Elim q d n) -> (0 _ : NotCloE e) => NotCloElim q d n
|
|
ncloE e @{p} = Element e p
|
|
|
|
|
|
|
|
mutual
|
|
||| if the input term has any top-level closures, push them under one layer of
|
|
||| syntax
|
|
export %inline
|
|
pushSubstsT : Term q d n -> NotCloTerm q d n
|
|
pushSubstsT s = pushSubstsTWith id id s
|
|
|
|
||| if the input elimination has any top-level closures, push them under one
|
|
||| layer of syntax
|
|
export %inline
|
|
pushSubstsE : Elim q d n -> NotCloElim q d n
|
|
pushSubstsE e = pushSubstsEWith id id e
|
|
|
|
export
|
|
pushSubstsTWith : DSubst dfrom dto -> TSubst q dto from to ->
|
|
Term q dfrom from -> NotCloTerm q dto to
|
|
pushSubstsTWith th ph (TYPE l) =
|
|
ncloT $ TYPE l
|
|
pushSubstsTWith th ph (Pi qty x a body) =
|
|
ncloT $ Pi qty x (subs a th ph) (subs body th ph)
|
|
pushSubstsTWith th ph (Lam x body) =
|
|
ncloT $ Lam x $ subs body th ph
|
|
pushSubstsTWith th ph (E e) =
|
|
let Element e _ = pushSubstsEWith th ph e in ncloT $ E e
|
|
pushSubstsTWith th ph (CloT s ps) =
|
|
pushSubstsTWith th (comp' th ps ph) s
|
|
pushSubstsTWith th ph (DCloT s ps) =
|
|
pushSubstsTWith (ps . th) ph s
|
|
|
|
export
|
|
pushSubstsEWith : DSubst dfrom dto -> TSubst q dto from to ->
|
|
Elim q dfrom from -> NotCloElim q dto to
|
|
pushSubstsEWith th ph (F x) =
|
|
ncloE $ F x
|
|
pushSubstsEWith th ph (B i) =
|
|
let res = ph !! i in
|
|
case notCloE res of
|
|
Yes _ => ncloE res
|
|
No _ => assert_total pushSubstsE res
|
|
pushSubstsEWith th ph (f :@ s) =
|
|
ncloE $ subs f th ph :@ subs s th ph
|
|
pushSubstsEWith th ph (s :# a) =
|
|
ncloE $ subs s th ph :# subs a th ph
|
|
pushSubstsEWith th ph (CloE e ps) =
|
|
pushSubstsEWith th (comp' th ps ph) e
|
|
pushSubstsEWith th ph (DCloE e ps) =
|
|
pushSubstsEWith (ps . th) ph e
|
|
|
|
|
|
parameters (th : DSubst dfrom dto) (ph : TSubst q dto from to)
|
|
public export %inline
|
|
pushSubstsTWith' : Term q dfrom from -> Term q dto to
|
|
pushSubstsTWith' s = (pushSubstsTWith th ph s).fst
|
|
|
|
public export %inline
|
|
pushSubstsEWith' : Elim q dfrom from -> Elim q dto to
|
|
pushSubstsEWith' e = (pushSubstsEWith th ph e).fst
|
|
|
|
|
|
public export %inline
|
|
pushSubstsT' : Term q d n -> Term q d n
|
|
pushSubstsT' s = (pushSubstsT s).fst
|
|
|
|
public export %inline
|
|
pushSubstsE' : Elim q d n -> Elim q d n
|
|
pushSubstsE' e = (pushSubstsE e).fst
|
|
|
|
|
|
-- mutual
|
|
-- -- tightening a term/elim also causes substitutions to be pushed through.
|
|
-- -- this is because otherwise a variable in an unused part of the subst
|
|
-- -- would cause it to incorrectly fail
|
|
|
|
-- export covering
|
|
-- Tighten (Term d) where
|
|
-- tighten p (TYPE l) =
|
|
-- pure $ TYPE l
|
|
-- tighten p (Pi qty x arg res) =
|
|
-- Pi qty x <$> tighten p arg
|
|
-- <*> tighten p res
|
|
-- tighten p (Lam x body) =
|
|
-- Lam x <$> tighten p body
|
|
-- tighten p (E e) =
|
|
-- E <$> tighten p e
|
|
-- tighten p (CloT tm th) =
|
|
-- tighten p $ pushSubstsTWith' id th tm
|
|
-- tighten p (DCloT tm th) =
|
|
-- tighten p $ pushSubstsTWith' th id tm
|
|
|
|
-- export covering
|
|
-- Tighten (Elim d) where
|
|
-- tighten p (F x) =
|
|
-- pure $ F x
|
|
-- tighten p (B i) =
|
|
-- B <$> tighten p i
|
|
-- tighten p (fun :@ arg) =
|
|
-- [|tighten p fun :@ tighten p arg|]
|
|
-- tighten p (tm :# ty) =
|
|
-- [|tighten p tm :# tighten p ty|]
|
|
-- tighten p (CloE el th) =
|
|
-- tighten p $ pushSubstsEWith' id th el
|
|
-- tighten p (DCloE el th) =
|
|
-- tighten p $ pushSubstsEWith' th id el
|
|
|
|
-- export covering
|
|
-- Tighten (ScopeTerm d) where
|
|
-- tighten p (TUsed body) = TUsed <$> tighten (Keep p) body
|
|
-- tighten p (TUnused body) = TUnused <$> tighten p body
|
|
|
|
|
|
public export %inline
|
|
weakT : Term q d n -> Term q d (S n)
|
|
weakT t = t //. shift 1
|
|
|
|
public export %inline
|
|
weakE : Elim q d n -> Elim q d (S n)
|
|
weakE t = t //. shift 1
|
|
|
|
|
|
mutual
|
|
public export
|
|
data IsRedexT : Term q d n -> Type where
|
|
IsUpsilonT : IsRedexT $ E (_ :# _)
|
|
IsCloT : IsRedexT $ CloT {}
|
|
IsDCloT : IsRedexT $ DCloT {}
|
|
IsERedex : IsRedexE e -> IsRedexT $ E e
|
|
|
|
public export %inline
|
|
NotRedexT : Term q d n -> Type
|
|
NotRedexT = Not . IsRedexT
|
|
|
|
public export
|
|
data IsRedexE : Elim q d n -> Type where
|
|
IsUpsilonE : IsRedexE $ E _ :# _
|
|
IsBetaLam : IsRedexE $ (Lam {} :# Pi {}) :@ _
|
|
IsCloE : IsRedexE $ CloE {}
|
|
IsDCloE : IsRedexE $ DCloE {}
|
|
|
|
public export %inline
|
|
NotRedexE : Elim q d n -> Type
|
|
NotRedexE = Not . IsRedexE
|
|
|
|
|
|
mutual
|
|
export %inline
|
|
isRedexT : (t : Term {}) -> Dec (IsRedexT t)
|
|
isRedexT (E (tm :# ty)) = Yes IsUpsilonT
|
|
isRedexT (CloT {}) = Yes IsCloT
|
|
isRedexT (DCloT {}) = Yes IsDCloT
|
|
isRedexT (E (CloE {})) = Yes $ IsERedex IsCloE
|
|
isRedexT (E (DCloE {})) = Yes $ IsERedex IsDCloE
|
|
isRedexT (E e@(_ :@ _)) with (isRedexE e)
|
|
_ | Yes yes = Yes $ IsERedex yes
|
|
_ | No no = No $ \case IsERedex p => no p
|
|
isRedexT (TYPE {}) = No $ \case _ impossible
|
|
isRedexT (Pi {}) = No $ \case _ impossible
|
|
isRedexT (Lam {}) = No $ \case _ impossible
|
|
isRedexT (E (F _)) = No $ \case IsERedex _ impossible
|
|
isRedexT (E (B _)) = No $ \case IsERedex _ impossible
|
|
|
|
export %inline
|
|
isRedexE : (e : Elim {}) -> Dec (IsRedexE e)
|
|
isRedexE (E _ :# _) = Yes IsUpsilonE
|
|
isRedexE ((Lam {} :# Pi {}) :@ _) = Yes IsBetaLam
|
|
isRedexE (CloE {}) = Yes IsCloE
|
|
isRedexE (DCloE {}) = Yes IsDCloE
|
|
isRedexE (F x) = No $ \case _ impossible
|
|
isRedexE (B i) = No $ \case _ impossible
|
|
isRedexE (F _ :@ _) = No $ \case _ impossible
|
|
isRedexE (B _ :@ _) = No $ \case _ impossible
|
|
isRedexE (_ :@ _ :@ _) = No $ \case _ impossible
|
|
isRedexE ((TYPE _ :# _) :@ _) = No $ \case _ impossible
|
|
isRedexE ((Pi {} :# _) :@ _) = No $ \case _ impossible
|
|
isRedexE ((Lam {} :# TYPE _) :@ _) = No $ \case _ impossible
|
|
isRedexE ((Lam {} :# Lam {}) :@ _) = No $ \case _ impossible
|
|
isRedexE ((Lam {} :# E _) :@ _) = No $ \case _ impossible
|
|
isRedexE ((Lam {} :# CloT {}) :@ _) = No $ \case _ impossible
|
|
isRedexE ((Lam {} :# DCloT {}) :@ _) = No $ \case _ impossible
|
|
isRedexE ((E _ :# _) :@ _) = No $ \case _ impossible
|
|
isRedexE ((CloT {} :# _) :@ _) = No $ \case _ impossible
|
|
isRedexE ((DCloT {} :# _) :@ _) = No $ \case _ impossible
|
|
isRedexE (CloE {} :@ _) = No $ \case _ impossible
|
|
isRedexE (DCloE {} :@ _) = No $ \case _ impossible
|
|
isRedexE (TYPE _ :# _) = No $ \case _ impossible
|
|
isRedexE (Pi {} :# _) = No $ \case _ impossible
|
|
isRedexE (Lam {} :# _) = No $ \case _ impossible
|
|
isRedexE (CloT {} :# _) = No $ \case _ impossible
|
|
isRedexE (DCloT {} :# _) = No $ \case _ impossible
|
|
|
|
|
|
public export %inline
|
|
RedexTerm : Type -> Nat -> Nat -> Type
|
|
RedexTerm q d n = Subset (Term q d n) IsRedexT
|
|
|
|
public export %inline
|
|
NonRedexTerm : Type -> Nat -> Nat -> Type
|
|
NonRedexTerm q d n = Subset (Term q d n) NotRedexT
|
|
|
|
public export %inline
|
|
RedexElim : Type -> Nat -> Nat -> Type
|
|
RedexElim q d n = Subset (Elim q d n) IsRedexE
|
|
|
|
public export %inline
|
|
NonRedexElim : Type -> Nat -> Nat -> Type
|
|
NonRedexElim q d n = Subset (Elim q d n) NotRedexE
|
|
|
|
|
|
||| substitute a term with annotation for the bound variable of a `ScopeTerm`
|
|
export %inline
|
|
substScope : (arg, argTy : Term q d n) -> (body : ScopeTerm q d n) -> Term q d n
|
|
substScope arg argTy (TUsed body) = body // one (arg :# argTy)
|
|
substScope arg argTy (TUnused body) = body
|
|
|
|
mutual
|
|
export %inline
|
|
stepT' : (s : Term q d n) -> IsRedexT s -> Term q d n
|
|
stepT' (E (s :# _)) IsUpsilonT = s
|
|
stepT' (CloT s th) IsCloT = pushSubstsTWith' id th s
|
|
stepT' (DCloT s th) IsDCloT = pushSubstsTWith' th id s
|
|
stepT' (E e) (IsERedex p) = E $ stepE' e p
|
|
|
|
export %inline
|
|
stepE' : (e : Elim q d n) -> IsRedexE e -> Elim q d n
|
|
stepE' (E e :# _) IsUpsilonE = e
|
|
stepE' ((Lam {body, _} :# Pi {arg, res, _}) :@ s) IsBetaLam =
|
|
substScope s arg body :# substScope s arg res
|
|
stepE' (CloE e th) IsCloE = pushSubstsEWith' id th e
|
|
stepE' (DCloE e th) IsDCloE = pushSubstsEWith' th id e
|
|
|
|
export %inline
|
|
stepT : (s : Term q d n) -> Either (NotRedexT s) (Term q d n)
|
|
stepT s = case isRedexT s of Yes y => Right $ stepT' s y; No n => Left n
|
|
|
|
export %inline
|
|
stepE : (e : Elim q d n) -> Either (NotRedexE e) (Elim q d n)
|
|
stepE e = case isRedexE e of Yes y => Right $ stepE' e y; No n => Left n
|
|
|
|
export covering
|
|
whnfT : Term q d n -> NonRedexTerm q d n
|
|
whnfT s = case stepT s of
|
|
Right s' => whnfT s'
|
|
Left done => Element s done
|
|
|
|
export covering
|
|
whnfE : Elim q d n -> NonRedexElim q d n
|
|
whnfE e = case stepE e of
|
|
Right e' => whnfE e'
|
|
Left done => Element e done
|