rhiannon morris
5053e9b234
injecting from m to (n+m) is just id ::: id ::: ... ::: shift n. specifically, injecting from 0 is just the shift. so.
93 lines
2.3 KiB
Idris
93 lines
2.3 KiB
Idris
module Quox.Definition
|
|
|
|
import public Quox.No
|
|
import public Quox.Syntax
|
|
import public Data.SortedMap
|
|
import public Control.Monad.Reader
|
|
import Decidable.Decidable
|
|
|
|
|
|
public export
|
|
data DefBody q =
|
|
Concrete (Term q 0 0)
|
|
| Postulate
|
|
|
|
namespace DefBody
|
|
public export
|
|
(.term0) : DefBody q -> Maybe (Term q 0 0)
|
|
(Concrete t).term0 = Just t
|
|
(Postulate).term0 = Nothing
|
|
|
|
|
|
public export
|
|
record Definition' q (isGlobal : Pred q) where
|
|
constructor MkDef
|
|
qty : q
|
|
type0 : Term q 0 0
|
|
body0 : DefBody q
|
|
{auto 0 qtyGlobal : isGlobal qty}
|
|
|
|
public export
|
|
0 Definition : (q : Type) -> IsQty q => Type
|
|
Definition q = Definition' q IsGlobal
|
|
|
|
public export %inline
|
|
mkPostulate : IsQty q => (qty : q) -> (0 _ : IsGlobal qty) =>
|
|
(type0 : Term q 0 0) -> Definition q
|
|
mkPostulate qty type0 = MkDef {qty, type0, body0 = Postulate}
|
|
|
|
public export %inline
|
|
mkDef : IsQty q => (qty : q) -> (0 _ : IsGlobal qty) =>
|
|
(type0, term0 : Term q 0 0) -> Definition q
|
|
mkDef qty type0 term0 = MkDef {qty, type0, body0 = Concrete term0}
|
|
|
|
|
|
public export %inline
|
|
(.qtyP) : forall q, isGlobal. Definition' q isGlobal -> Subset q isGlobal
|
|
g.qtyP = Element g.qty g.qtyGlobal
|
|
|
|
parameters {d, n : Nat}
|
|
public export %inline
|
|
(.type) : Definition' q _ -> Term q d n
|
|
g.type = g.type0 // shift0 d // shift0 n
|
|
|
|
public export %inline
|
|
(.term) : Definition' q _ -> Maybe (Term q d n)
|
|
g.term = g.body0.term0 <&> \t => t // shift0 d // shift0 n
|
|
|
|
public export %inline
|
|
toElim : Definition' q _ -> Maybe $ Elim q d n
|
|
toElim def = pure $ !def.term :# def.type
|
|
|
|
|
|
public export
|
|
0 IsZero : IsQty q => Pred $ Definition q
|
|
IsZero g = IsZero g.qty
|
|
|
|
public export %inline
|
|
isZero : (p : IsQty q) => Dec1 $ Definition.IsZero @{p}
|
|
isZero g = isZero g.qty
|
|
|
|
|
|
public export
|
|
0 Definitions' : (q : Type) -> Pred q -> Type
|
|
Definitions' q isGlobal = SortedMap Name $ Definition' q isGlobal
|
|
|
|
public export
|
|
0 Definitions : (q : Type) -> IsQty q => Type
|
|
Definitions q = Definitions' q IsGlobal
|
|
|
|
|
|
public export
|
|
0 HasDefs' : (q : Type) -> (q -> Type) -> (Type -> Type) -> Type
|
|
HasDefs' q isGlobal = MonadReader (Definitions' q isGlobal)
|
|
|
|
public export
|
|
0 HasDefs : (q : Type) -> IsQty q => (Type -> Type) -> Type
|
|
HasDefs q = HasDefs' q IsGlobal
|
|
|
|
|
|
public export %inline
|
|
lookupElim : forall isGlobal. {d, n : Nat} ->
|
|
Name -> Definitions' q isGlobal -> Maybe (Elim q d n)
|
|
lookupElim x defs = toElim !(lookup x defs)
|