quox/stdlib/pair.quox

67 lines
2.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

namespace pair {
def0 Σ : (A : ★) → (A → ★) → ★ = λ A B ⇒ (x : A) × B x
def uncurry :
0.(A : ★) → 0.(B : A → ★) → 0.(C : (x : A) → (B x) → ★) →
(f : (x : A) → (y : B x) → C x y) →
(p : Σ A B) → C (fst p) (snd p) =
λ A B C f p ⇒
case p return p' ⇒ C (fst p') (snd p') of { (x, y) ⇒ f x y }
def uncurry' :
0.(A B C : ★) → (A → B → C) → (A × B) → C =
λ A B C ⇒ uncurry A (λ _ ⇒ B) (λ _ _ ⇒ C)
def curry :
0.(A : ★) → 0.(B : A → ★) → 0.(C : (Σ A B) → ★) →
(f : (p : Σ A B) → C p) → (x : A) → (y : B x) → C (x, y) =
λ A B C f x y ⇒ f (x, y)
def curry' :
0.(A B C : ★) → (A × B → C) → A → B → C =
λ A B C ⇒ curry A (λ _ ⇒ B) (λ _ ⇒ C)
def0 fst-snd :
(A : ★) → (B : A → ★) →
(p : Σ A B) → p ≡ (fst p, snd p) : Σ A B =
λ A B p ⇒ δ 𝑖 ⇒ p -- η
def0 fst-eq :
(A : ★) → (B : A → ★) →
(p q : Σ A B) → p ≡ q : Σ A B → fst p ≡ fst q : A =
λ A B p q eq ⇒ δ 𝑖 ⇒ fst (eq @𝑖)
def0 snd-eq :
(A : ★) → (B : A → ★) →
(p q : Σ A B) → (eq : p ≡ q : Σ A B) →
Eq (𝑖 ⇒ B (fst-eq A B p q eq @𝑖)) (snd p) (snd q) =
λ A B p q eq ⇒ δ 𝑖 ⇒ snd (eq @𝑖)
def0 pair-eq :
(A : ★) → (B : A → ★) →
(x0 x1 : A) → (y0 : B x0) → (y1 : B x1) →
(xx : x0 ≡ x1 : A) → (yy : Eq (𝑖 ⇒ B (xx @𝑖)) y0 y1) →
(x0, y0) ≡ (x1, y1) : ((x : A) × B x) =
λ A B x0 x1 y0 y1 xx yy ⇒ δ 𝑖 ⇒ (xx @𝑖, yy @𝑖)
def map :
0.(A A' : ★) →
0.(B : A → ★) → 0.(B' : A' → ★) →
(f : A → A') → (g : 0.(x : A) → (B x) → B' (f x)) →
Σ A B → Σ A' B' =
λ A A' B B' f g p ⇒
case p return Σ A' B' of { (x, y) ⇒ (f x, g x y) }
def map' : 0.(A A' B B' : ★) → (A → A') → (B → B') → (A × B) → A' × B' =
λ A A' B B' f g ⇒ map A A' (λ _ ⇒ B) (λ _ ⇒ B') f (λ _ ⇒ g)
def map-fst : 0.(A A' B : ★) → (A → A') → A × B → A' × B =
λ A A' B f ⇒ map' A A' B B f (λ x ⇒ x)
def map-snd : 0.(A B B' : ★) → (B → B') → A × B → A × B' =
λ A B B' f ⇒ map' A A B B' (λ x ⇒ x) f
}
def0 Σ = pair.Σ