300 lines
8.4 KiB
Idris
300 lines
8.4 KiB
Idris
module Quox.Syntax.Var
|
|
|
|
import public Quox.Loc
|
|
import public Quox.Name
|
|
import Quox.OPE
|
|
|
|
import Data.Nat
|
|
import Data.List
|
|
import Data.Vect
|
|
import public Quox.Decidable
|
|
import Data.Bool.Decidable
|
|
import Data.DPair
|
|
|
|
%default total
|
|
|
|
|
|
public export
|
|
data Var : Nat -> Type where
|
|
VZ : Var (S n)
|
|
VS : Var n -> Var (S n)
|
|
%name Var i, j
|
|
%builtin Natural Var
|
|
|
|
public export
|
|
(.nat) : Var n -> Nat
|
|
(VZ).nat = 0
|
|
(VS i).nat = S i.nat
|
|
%transform "Var.(.nat)" Var.(.nat) i = believe_me i
|
|
|
|
public export %inline Cast (Var n) Nat where cast = (.nat)
|
|
public export %inline Cast (Var n) Integer where cast = cast . cast {to = Nat}
|
|
|
|
export %inline Eq (Var n) where i == j = i.nat == j.nat
|
|
export %inline Ord (Var n) where compare i j = compare i.nat j.nat
|
|
export %inline Show (Var n) where showPrec d i = showCon d "V" $ showArg i.nat
|
|
|
|
public export %inline Injective VS where injective Refl = Refl
|
|
|
|
export Uninhabited (Var 0) where uninhabited _ impossible
|
|
|
|
export Uninhabited (VZ = VS i) where uninhabited _ impossible
|
|
export Uninhabited (VS i = VZ) where uninhabited _ impossible
|
|
|
|
|
|
public export
|
|
data Eqv : Var m -> Var n -> Type where
|
|
EZ : VZ `Eqv` VZ
|
|
ES : i `Eqv` j -> VS i `Eqv` VS j
|
|
%name Var.Eqv e
|
|
|
|
export
|
|
decEqv : Dec2 Eqv
|
|
decEqv VZ VZ = Yes EZ
|
|
decEqv VZ (VS i) = No $ \case _ impossible
|
|
decEqv (VS i) VZ = No $ \case _ impossible
|
|
decEqv (VS i) (VS j) =
|
|
case decEqv i j of
|
|
Yes y => Yes $ ES y
|
|
No n => No $ \(ES y) => n y
|
|
|
|
|
|
private
|
|
lookupS : Nat -> SnocList a -> Maybe a
|
|
lookupS _ [<] = Nothing
|
|
lookupS Z (sx :< x) = Just x
|
|
lookupS (S i) (sx :< x) = lookupS i sx
|
|
|
|
|
|
public export
|
|
fromNatWith : (i : Nat) -> (0 p : i `LT` n) -> Var n
|
|
fromNatWith Z (LTESucc _) = VZ
|
|
fromNatWith (S i) (LTESucc p) = VS $ fromNatWith i p
|
|
%transform "Var.fromNatWith" fromNatWith i p = believe_me i
|
|
|
|
public export %inline
|
|
V : (i : Nat) -> {auto 0 p : i `LT` n} -> Var n
|
|
V i = fromNatWith i p
|
|
|
|
export %inline
|
|
tryFromNat : Alternative f => (n : Nat) -> Nat -> f (Var n)
|
|
tryFromNat n i =
|
|
case i `isLT` n of
|
|
Yes p => pure $ fromNatWith i p
|
|
No _ => empty
|
|
|
|
export
|
|
0 toNatLT : (i : Var n) -> i.nat `LT` n
|
|
toNatLT VZ = LTESucc LTEZero
|
|
toNatLT (VS i) = LTESucc $ toNatLT i
|
|
|
|
public export
|
|
toNatInj : {i, j : Var n} -> i.nat = j.nat -> i = j
|
|
toNatInj {i = VZ} {j = VZ} Refl = Refl
|
|
toNatInj {i = VZ} {j = (VS i)} Refl impossible
|
|
toNatInj {i = (VS i)} {j = VZ} Refl impossible
|
|
toNatInj {i = (VS i)} {j = (VS j)} prf = cong VS $ toNatInj $ injective prf
|
|
|
|
public export %inline Injective (.nat) where injective = toNatInj
|
|
|
|
export
|
|
0 fromToNat : (i : Var n) -> (p : i.nat `LT` n) -> fromNatWith i.nat p = i
|
|
fromToNat VZ (LTESucc p) = Refl
|
|
fromToNat (VS i) (LTESucc p) = rewrite fromToNat i p in Refl
|
|
|
|
export
|
|
0 toFromNat : (i : Nat) -> (p : i `LT` n) -> (fromNatWith i p).nat = i
|
|
toFromNat 0 (LTESucc x) = Refl
|
|
toFromNat (S k) (LTESucc x) = cong S $ toFromNat k x
|
|
|
|
|
|
-- not using %transform like other things because weakSpec requires the proof
|
|
-- to be relevant. but since only `LTESucc` is ever possible that seems
|
|
-- to be an instance of <https://github.com/idris-lang/Idris2/issues/1259>?
|
|
export
|
|
weak : (0 p : m `LTE` n) -> Var m -> Var n
|
|
weak p i = fromNatWith i.nat $ transitive (toNatLT i) p
|
|
|
|
public export
|
|
0 weakSpec : m `LTE` n -> Var m -> Var n
|
|
weakSpec LTEZero _ impossible
|
|
weakSpec (LTESucc p) VZ = VZ
|
|
weakSpec (LTESucc p) (VS i) = VS $ weakSpec p i
|
|
|
|
export
|
|
0 weakSpecCorrect : (p : m `LTE` n) -> (i : Var m) -> (weakSpec p i).nat = i.nat
|
|
weakSpecCorrect LTEZero _ impossible
|
|
weakSpecCorrect (LTESucc x) VZ = Refl
|
|
weakSpecCorrect (LTESucc x) (VS i) = cong S $ weakSpecCorrect x i
|
|
|
|
export
|
|
0 weakCorrect : (p : m `LTE` n) -> (i : Var m) -> (weak p i).nat = i.nat
|
|
weakCorrect LTEZero _ impossible
|
|
weakCorrect (LTESucc p) VZ = Refl
|
|
weakCorrect (LTESucc p) (VS i) = cong S $ weakCorrect p i
|
|
|
|
export
|
|
0 weakIsSpec : (p : m `LTE` n) -> (i : Var m) -> weak p i = weakSpec p i
|
|
weakIsSpec p i = toNatInj $ trans (weakCorrect p i) (sym $ weakSpecCorrect p i)
|
|
|
|
|
|
public export
|
|
interface FromVar f where %inline fromVar : Var n -> Loc -> f n
|
|
|
|
public export FromVar Var where fromVar x _ = x
|
|
|
|
export
|
|
tabulateV : {0 tm : Nat -> Type} -> (forall n. Var n -> tm n) ->
|
|
(n : Nat) -> Vect n (tm n)
|
|
tabulateV f 0 = []
|
|
tabulateV f (S n) = f VZ :: tabulateV (f . VS) n
|
|
|
|
export
|
|
allVars : (n : Nat) -> Vect n (Var n)
|
|
allVars n = tabulateV id n
|
|
|
|
|
|
public export
|
|
data LT : Rel (Var n) where
|
|
LTZ : VZ `LT` VS i
|
|
LTS : i `LT` j -> VS i `LT` VS j
|
|
%builtin Natural Var.LT
|
|
%name Var.LT lt
|
|
|
|
public export %inline
|
|
GT : Rel (Var n)
|
|
i `GT` j = j `LT` i
|
|
|
|
export
|
|
Transitive (Var n) LT where
|
|
transitive LTZ (LTS _) = LTZ
|
|
transitive (LTS p) (LTS q) = LTS $ transitive p q
|
|
|
|
export Uninhabited (i `Var.LT` i) where uninhabited (LTS p) = uninhabited p
|
|
export Uninhabited (VS i `LT` VZ) where uninhabited _ impossible
|
|
|
|
|
|
export
|
|
ltReflect : LT {n} `Reflects2` (<)
|
|
ltReflect VZ VZ = RFalse absurd
|
|
ltReflect VZ (VS j) = RTrue LTZ
|
|
ltReflect (VS i) VZ = RFalse absurd
|
|
ltReflect (VS i) (VS j) with (ltReflect i j) | (i < j)
|
|
_ | RTrue yes | True = RTrue $ LTS yes
|
|
_ | RFalse no | False = RFalse $ \case LTS p => no p
|
|
|
|
export
|
|
isLT : Dec2 Var.LT
|
|
isLT i j = reflectToDec $ ltReflect i j
|
|
|
|
|
|
public export
|
|
data Compare : (i, j : Var n) -> Ordering -> Type where
|
|
IsLT : (lt : i `LT` j) -> Compare i j LT
|
|
IsEQ : Compare i i EQ
|
|
IsGT : (gt : i `GT` j) -> Compare i j GT
|
|
%name Compare cmp
|
|
|
|
export
|
|
compareS : Compare i j o -> Compare (VS i) (VS j) o
|
|
compareS (IsLT lt) = IsLT (LTS lt)
|
|
compareS IsEQ = IsEQ
|
|
compareS (IsGT gt) = IsGT (LTS gt)
|
|
|
|
export
|
|
compareP : (i, j : Var n) -> Compare i j (compare i j)
|
|
compareP VZ VZ = IsEQ
|
|
compareP VZ (VS j) = IsLT LTZ
|
|
compareP (VS i) VZ = IsGT LTZ
|
|
compareP (VS i) (VS j) = compareS $ compareP i j
|
|
|
|
export
|
|
0 compare2 : Compare {n} i j o -> o = compare i j
|
|
compare2 (IsLT LTZ) = Refl
|
|
compare2 (IsLT (LTS lt)) = compare2 (IsLT lt)
|
|
compare2 IsEQ = sym $ compareNatDiag i.nat
|
|
compare2 (IsGT LTZ) = Refl
|
|
compare2 (IsGT (LTS gt)) = compare2 $ IsGT gt
|
|
compare2 _ {n = 0} = absurd i
|
|
|
|
export
|
|
0 compareSelf : Compare i i o -> o = EQ
|
|
compareSelf p = rewrite compare2 p in compareNatDiag i.nat
|
|
|
|
export
|
|
0 comparePSelf : (i : Var n) -> Compare i i EQ
|
|
comparePSelf i = rewrite sym $ compareNatDiag i.nat in compareP i i
|
|
|
|
|
|
public export
|
|
data LTE : Rel (Var n) where
|
|
LTEZ : VZ `LTE` j
|
|
LTES : i `LTE` j -> VS i `LTE` VS j
|
|
|
|
export
|
|
Reflexive (Var n) LTE where
|
|
reflexive {x = VZ} = LTEZ
|
|
reflexive {x = VS i} = LTES reflexive
|
|
|
|
export
|
|
Transitive (Var n) LTE where
|
|
transitive LTEZ q = LTEZ
|
|
transitive (LTES p) (LTES q) = LTES $ transitive p q
|
|
|
|
export
|
|
Antisymmetric (Var n) LTE where
|
|
antisymmetric LTEZ LTEZ = Refl
|
|
antisymmetric (LTES p) (LTES q) = cong VS $ antisymmetric p q
|
|
|
|
export
|
|
splitLTE : {j : Var n} -> i `LTE` j -> Either (i = j) (i `LT` j)
|
|
splitLTE {j = VZ} LTEZ = Left Refl
|
|
splitLTE {j = VS _} LTEZ = Right LTZ
|
|
splitLTE (LTES p) with (splitLTE p)
|
|
_ | Left eq = Left $ cong VS eq
|
|
_ | Right lt = Right $ LTS lt
|
|
|
|
export Uninhabited (VS i `LTE` VZ) where uninhabited _ impossible
|
|
|
|
export
|
|
lteReflect : (i, j : Var n) -> (LTE i j) `Reflects` (i <= j)
|
|
lteReflect VZ VZ = RTrue LTEZ
|
|
lteReflect VZ (VS j) = RTrue LTEZ
|
|
lteReflect (VS i) VZ = RFalse absurd
|
|
lteReflect (VS i) (VS j) with (lteReflect i j) | (i <= j)
|
|
_ | RTrue yes | True = RTrue (LTES yes)
|
|
_ | RFalse no | False = RFalse $ \case LTES lte => no lte
|
|
|
|
|
|
public export
|
|
eqReflect : (i, j : Var n) -> (i = j) `Reflects` (i == j)
|
|
eqReflect VZ VZ = RTrue Refl
|
|
eqReflect VZ (VS i) = RFalse absurd
|
|
eqReflect (VS i) VZ = RFalse absurd
|
|
eqReflect (VS i) (VS j) with (eqReflect i j) | (i == j)
|
|
_ | RTrue yes | True = RTrue $ cong VS yes
|
|
_ | RFalse no | False = RFalse $ no . injective
|
|
|
|
public export %inline
|
|
varDecEq : (i, j : Var n) -> Dec (i = j)
|
|
varDecEq i j = reflectToDec $ eqReflect i j
|
|
|
|
-- justified by eqReflect [citation needed]
|
|
private %inline
|
|
decEqFromBool : (i, j : Var n) -> Dec (i = j)
|
|
decEqFromBool i j =
|
|
if i == j then Yes $ believe_me $ Refl {x = 0}
|
|
else No $ id . believe_me
|
|
|
|
%transform "Var.decEq" varDecEq = decEqFromBool
|
|
|
|
public export %inline DecEq (Var n) where decEq = varDecEq
|
|
|
|
|
|
export
|
|
Tighten Var where
|
|
tighten Id i = Just i
|
|
tighten (Drop p) VZ = Nothing
|
|
tighten (Drop p) (VS i) = tighten p i
|
|
tighten (Keep p) VZ = Just VZ
|
|
tighten (Keep p) (VS i) = VS <$> tighten p i
|