quox/lib/Quox/NatExtra.idr

209 lines
6.3 KiB
Idris

module Quox.NatExtra
import public Data.Nat
import public Data.Nat.Views
import Data.Nat.Division
import Data.SnocList
import Data.Vect
import Syntax.PreorderReasoning
%default total
infixl 8 `shiftL`, `shiftR`
infixl 7 .&.
infixl 6 `xor`
infixl 5 .|.
public export
data LTE' : Nat -> Nat -> Type where
LTERefl : LTE' n n
LTESuccR : LTE' m n -> LTE' m (S n)
%builtin Natural LTE'
public export %hint
lteZero' : {n : Nat} -> LTE' 0 n
lteZero' {n = 0} = LTERefl
lteZero' {n = S n} = LTESuccR lteZero'
public export %hint
lteSucc' : LTE' m n -> LTE' (S m) (S n)
lteSucc' LTERefl = LTERefl
lteSucc' (LTESuccR p) = LTESuccR $ lteSucc' p
public export
fromLte : {n : Nat} -> LTE m n -> LTE' m n
fromLte LTEZero = lteZero'
fromLte (LTESucc p) = lteSucc' $ fromLte p
public export
toLte : {n : Nat} -> m `LTE'` n -> m `LTE` n
toLte LTERefl = reflexive
toLte (LTESuccR p) = lteSuccRight (toLte p)
private
0 baseNZ : n `GTE` 2 => NonZero n
baseNZ @{LTESucc _} = SIsNonZero
parameters {base : Nat} {auto 0 _ : base `GTE` 2} (chars : Vect base Char)
private
showAtBase' : List Char -> Nat -> List Char
showAtBase' acc 0 = acc
showAtBase' acc k =
let dig = natToFinLT (modNatNZ k base baseNZ) @{boundModNatNZ {}} in
showAtBase' (index dig chars :: acc)
(assert_smaller k $ divNatNZ k base baseNZ)
export
showAtBase : Nat -> String
showAtBase = pack . showAtBase' []
export
showHex : Nat -> String
showHex = showAtBase $ fromList $ unpack "0123456789ABCDEF"
export
0 notEvenOdd : (a, b : Nat) -> Not (a + a = S (b + b))
notEvenOdd 0 b prf = absurd prf
notEvenOdd (S a) b prf =
notEvenOdd b a $ Calc $
|~ b + b
~~ a + S a ..<(inj S prf)
~~ S (a + a) ..<(plusSuccRightSucc {})
export
0 doubleInj : (m, n : Nat) -> m + m = n + n -> m = n
doubleInj 0 0 _ = Refl
doubleInj (S m) (S n) prf =
cong S $ doubleInj m n $
inj S $ Calc $
|~ S (m + m)
~~ m + S m ...(plusSuccRightSucc {})
~~ n + S n ...(inj S prf)
~~ S (n + n) ..<(plusSuccRightSucc {})
export
0 halfDouble : (n : Nat) -> half (n + n) = HalfEven n
halfDouble n with (half (n + n)) | (n + n) proof nn
_ | HalfOdd k | S (k + k) = void $ notEvenOdd n k nn
_ | HalfEven k | k + k = rewrite doubleInj n k nn in Refl
export
floorHalf : Nat -> Nat
floorHalf k = case half k of
HalfOdd n => n
HalfEven n => n
||| like in intercal ☺
|||
||| take all the bits of `subj` that are set in `mask`, and squish them down
||| towards the lsb
public export
select : (mask, subj : Nat) -> Nat
select mask subj = go 1 (halfRec mask) subj 0 where
go : forall mask. Nat -> HalfRec mask -> Nat -> Nat -> Nat
go bit HalfRecZ subj res = res
go bit (HalfRecEven _ rec) subj res = go bit rec (floorHalf subj) res
go bit (HalfRecOdd _ rec) subj res = case half subj of
HalfOdd subj => go (bit + bit) rec subj (res + bit)
HalfEven subj => go (bit + bit) rec subj res
||| take the i least significant bits of subj (where i = popCount mask),
||| and place them where mask's set bits are
|||
||| left inverse of select if mask .|. subj = mask
public export
spread : (mask, subj : Nat) -> Nat
spread mask subj = go 1 (halfRec mask) subj 0 where
go : forall mask. Nat -> HalfRec mask -> Nat -> Nat -> Nat
go bit HalfRecZ subj res = res
go bit (HalfRecEven _ rec) subj res = go (bit + bit) rec subj res
go bit (HalfRecOdd _ rec) subj res = case half subj of
HalfOdd subj => go (bit + bit) rec subj (res + bit)
HalfEven subj => go (bit + bit) rec subj res
public export
data BitwiseRec : Nat -> Nat -> Type where
BwDone : BitwiseRec 0 0
Bw00 : (m, n : Nat) -> Lazy (BitwiseRec m n) ->
BitwiseRec (m + m) (n + n)
Bw01 : (m, n : Nat) -> Lazy (BitwiseRec m n) ->
BitwiseRec (m + m) (S (n + n))
Bw10 : (m, n : Nat) -> Lazy (BitwiseRec m n) ->
BitwiseRec (S (m + m)) (n + n)
Bw11 : (m, n : Nat) -> Lazy (BitwiseRec m n) ->
BitwiseRec (S (m + m)) (S (n + n))
export
bitwiseRec : (m, n : Nat) -> BitwiseRec m n
bitwiseRec m n = go (halfRec m) (halfRec n) where
go : forall m, n. HalfRec m -> HalfRec n -> BitwiseRec m n
go HalfRecZ HalfRecZ = BwDone
go HalfRecZ (HalfRecEven n nr) = Bw00 0 n $ go HalfRecZ nr
go HalfRecZ (HalfRecOdd n nr) = Bw01 0 n $ go HalfRecZ nr
go (HalfRecEven m mr) HalfRecZ = Bw00 m 0 $ go mr HalfRecZ
go (HalfRecEven m mr) (HalfRecEven n nr) = Bw00 m n $ go mr nr
go (HalfRecEven m mr) (HalfRecOdd n nr) = Bw01 m n $ go mr nr
go (HalfRecOdd m mr) HalfRecZ = Bw10 m 0 $ go mr HalfRecZ
go (HalfRecOdd m mr) (HalfRecEven n nr) = Bw10 m n $ go mr nr
go (HalfRecOdd m mr) (HalfRecOdd n nr) = Bw11 m n $ go mr nr
public export
bitwise : (Bool -> Bool -> Bool) -> Nat -> Nat -> Nat
bitwise f m n = go 1 (bitwiseRec m n) 0 where
one : Bool -> Bool -> Nat -> Nat -> Nat
one p q bit res = if f p q then bit + res else res
go : forall m, n. Nat -> BitwiseRec m n -> Nat -> Nat
go bit BwDone res = res
go bit (Bw00 m n rec) res = go (bit + bit) rec $ one False False bit res
go bit (Bw01 m n rec) res = go (bit + bit) rec $ one False True bit res
go bit (Bw10 m n rec) res = go (bit + bit) rec $ one True False bit res
go bit (Bw11 m n rec) res = go (bit + bit) rec $ one True True bit res
public export
(.&.) : Nat -> Nat -> Nat
(.&.) = bitwise $ \p, q => p && q
private %foreign "scheme:blodwen-and"
primAnd : Nat -> Nat -> Nat
%transform "NatExtra.(.&.)" NatExtra.(.&.) m n = primAnd m n
public export
(.|.) : Nat -> Nat -> Nat
(.|.) = bitwise $ \p, q => p || q
private %foreign "scheme:blodwen-or"
primOr : Nat -> Nat -> Nat
%transform "NatExtra.(.|.)" NatExtra.(.|.) m n = primOr m n
public export
xor : Nat -> Nat -> Nat
xor = bitwise (/=)
private %foreign "scheme:blodwen-xor"
primXor : Nat -> Nat -> Nat
%transform "NatExtra.xor" NatExtra.xor m n = primXor m n
public export
shiftL : Nat -> Nat -> Nat
shiftL n 0 = n
shiftL n (S i) = shiftL (n + n) i
private %foreign "scheme:blodwen-shl"
primShiftL : Nat -> Nat -> Nat
%transform "NatExtra.shiftL" NatExtra.shiftL n i = primShiftL n i
public export
shiftR : Nat -> Nat -> Nat
shiftR n 0 = n
shiftR n (S i) = shiftL (floorHalf n) i
private %foreign "scheme:blodwen-shr"
primShiftR : Nat -> Nat -> Nat
%transform "NatExtra.shiftR" NatExtra.shiftR n i = primShiftR n i