quox/lib/Quox/Typechecker.idr

566 lines
20 KiB
Idris
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Quox.Typechecker
import public Quox.Typing
import public Quox.Equal
import Quox.Displace
import Quox.Pretty
import Data.List
import Data.SnocVect
import Data.List1
import Quox.EffExtra
%default total
public export
0 TC : List (Type -> Type)
TC = [ErrorEff, DefsReader, NameGen, Log]
parameters (loc : Loc)
export
popQs : Has ErrorEff fs => QContext s -> QOutput (s + n) ->
Eff fs (QOutput n)
popQs [<] qout = pure qout
popQs (pis :< pi) (qout :< rh) = do expectCompatQ loc rh pi; popQs pis qout
export %inline
popQ : Has ErrorEff fs => Qty -> QOutput (S n) -> Eff fs (QOutput n)
popQ pi = popQs [< pi]
export
lubs1 : List1 (QOutput n) -> QOutput n
lubs1 ([<] ::: _) = [<]
lubs1 ((qs :< p) ::: pqs) =
let (qss, ps) = unzip $ map unsnoc pqs in
lubs1 (qs ::: qss) :< foldl lub p ps
export
lubs : TyContext d n -> List (QOutput n) -> QOutput n
lubs ctx [] = zeroFor ctx
lubs ctx (x :: xs) = lubs1 $ x ::: xs
private
prettyTermTC : {opts : LayoutOpts} ->
TyContext d n -> Term d n -> Eff Pretty (Doc opts)
prettyTermTC ctx s = prettyTerm ctx.dnames ctx.tnames s
private
checkLogs : String -> TyContext d n -> SQty ->
Term d n -> Maybe (Term d n) -> Eff TC ()
checkLogs fun ctx sg subj ty = do
let tyDoc = delay $ maybe (text "none") (runPretty . prettyTermTC ctx) ty
sayMany "check" subj.loc
[10 :> text fun,
95 :> hsep ["ctx =", runPretty $ prettyTyContext ctx],
95 :> hsep ["sg =", runPretty $ prettyQty sg.qty],
10 :> hsep ["subj =", runPretty $ prettyTermTC ctx subj],
10 :> hsep ["ty =", tyDoc]]
mutual
||| "Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ"
|||
||| `check ctx sg subj ty` checks that in the context `ctx`, the term
||| `subj` has the type `ty`, with quantity `sg`. if so, returns the
||| quantities of all bound variables that it used.
|||
||| if the dimension context is inconsistent, then return `Nothing`, without
||| doing any further work.
export covering %inline
check : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n ->
Eff TC (CheckResult ctx.dctx n)
check ctx sg subj ty =
ifConsistentElse ctx.dctx
(do checkLogs "check" ctx sg subj (Just ty)
checkC ctx sg subj ty)
(say "check" 20 subj.loc "check: 0=1")
||| "Ψ | Γ ⊢₀ s ⇐ A"
|||
||| `check0 ctx subj ty` checks a term (as `check`) in a zero context.
export covering %inline
check0 : TyContext d n -> Term d n -> Term d n -> Eff TC ()
check0 ctx tm ty = ignore $ check ctx SZero tm ty
-- the output will always be 𝟎 because the subject quantity is 0
||| `check`, assuming the dimension context is consistent
export covering %inline
checkC : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n ->
Eff TC (CheckResult' n)
checkC ctx sg subj ty =
wrapErr (WhileChecking ctx sg subj ty) $
checkCNoWrap ctx sg subj ty
export covering %inline
checkCNoWrap : (ctx : TyContext d n) -> SQty -> Term d n -> Term d n ->
Eff TC (CheckResult' n)
checkCNoWrap ctx sg subj ty =
let Element subj nc = pushSubsts subj in
check' ctx sg subj ty
||| "Ψ | Γ ⊢₀ s ⇐ ★ᵢ"
|||
||| `checkType ctx subj ty` checks a type (in a zero context). sometimes the
||| universe doesn't matter, only that a term is _a_ type, so it is optional.
export covering %inline
checkType : TyContext d n -> Term d n -> Maybe Universe -> Eff TC ()
checkType ctx subj l = do
let univ = TYPE <$> l <*> pure noLoc
ignore $ ifConsistentElse ctx.dctx
(do checkLogs "checkType" ctx SZero subj univ
checkTypeC ctx subj l)
(say "check" 20 subj.loc "checkType: 0=1")
export covering %inline
checkTypeC : TyContext d n -> Term d n -> Maybe Universe -> Eff TC ()
checkTypeC ctx subj l =
wrapErr (WhileCheckingTy ctx subj l) $ checkTypeNoWrap ctx subj l
export covering %inline
checkTypeNoWrap : TyContext d n -> Term d n -> Maybe Universe -> Eff TC ()
checkTypeNoWrap ctx subj l =
let Element subj nc = pushSubsts subj in
checkType' ctx subj l
||| "Ψ | Γ ⊢ σ · e ⇒ A ⊳ Σ"
|||
||| `infer ctx sg subj` infers the type of `subj` in the context `ctx`,
||| and returns its type and the bound variables it used.
|||
||| if the dimension context is inconsistent, then return `Nothing`, without
||| doing any further work.
export covering %inline
infer : (ctx : TyContext d n) -> SQty -> Elim d n ->
Eff TC (InferResult ctx.dctx d n)
infer ctx sg subj = do
ifConsistentElse ctx.dctx
(do checkLogs "infer" ctx sg (E subj) Nothing
inferC ctx sg subj)
(say "check" 20 subj.loc "infer: 0=1")
||| `infer`, assuming the dimension context is consistent
export covering %inline
inferC : (ctx : TyContext d n) -> SQty -> Elim d n ->
Eff TC (InferResult' d n)
inferC ctx sg subj =
wrapErr (WhileInferring ctx sg subj) $
let Element subj nc = pushSubsts subj in
infer' ctx sg subj
private covering
toCheckType : TyContext d n -> SQty ->
(subj : Term d n) -> (0 nc : NotClo subj) => Term d n ->
Eff TC (CheckResult' n)
toCheckType ctx sg t ty = do
u <- expectTYPE !(askAt DEFS) ctx sg ty.loc ty
expectEqualQ t.loc Zero sg.qty
checkTypeNoWrap ctx t (Just u)
pure $ zeroFor ctx
private covering
check' : TyContext d n -> SQty ->
(subj : Term d n) -> (0 nc : NotClo subj) => Term d n ->
Eff TC (CheckResult' n)
check' ctx sg t@(TYPE {}) ty = toCheckType ctx sg t ty
check' ctx sg t@(IOState {}) ty = toCheckType ctx sg t ty
check' ctx sg t@(Pi {}) ty = toCheckType ctx sg t ty
check' ctx sg (Lam body loc) ty = do
(qty, arg, res) <- expectPi !(askAt DEFS) ctx SZero ty.loc ty
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ B ⊳ Σ, ρ·x
-- with ρ ≤ σπ
let qty' = sg.qty * qty
qout <- checkC (extendTy qty' body.name arg ctx) sg body.term res.term
-- then Ψ | Γ ⊢ σ · (λx ⇒ t) ⇐ (π·x : A) → B ⊳ Σ
popQ loc qty' qout
check' ctx sg t@(Sig {}) ty = toCheckType ctx sg t ty
check' ctx sg (Pair fst snd loc) ty = do
(tfst, tsnd) <- expectSig !(askAt DEFS) ctx SZero ty.loc ty
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ₁
qfst <- checkC ctx sg fst tfst
let tsnd = sub1 tsnd (Ann fst tfst fst.loc)
-- if Ψ | Γ ⊢ σ · t ⇐ B[s] ⊳ Σ₂
qsnd <- checkC ctx sg snd tsnd
-- then Ψ | Γ ⊢ σ · (s, t) ⇐ (x : A) × B ⊳ Σ₁ + Σ₂
pure $ qfst + qsnd
check' ctx sg t@(Enum {}) ty = toCheckType ctx sg t ty
check' ctx sg (Tag t loc) ty = do
tags <- expectEnum !(askAt DEFS) ctx SZero ty.loc ty
-- if t ∈ ts
unless (t `elem` tags) $ throw $ TagNotIn loc t tags
-- then Ψ | Γ ⊢ σ · t ⇐ {ts} ⊳ 𝟎
pure $ zeroFor ctx
check' ctx sg t@(Eq {}) ty = toCheckType ctx sg t ty
check' ctx sg (DLam body loc) ty = do
(ty, l, r) <- expectEq !(askAt DEFS) ctx SZero ty.loc ty
let ctx' = extendDim body.name ctx
ty = ty.term
body = body.term
-- if Ψ, i | Γ ⊢ σ · t ⇐ A ⊳ Σ
qout <- checkC ctx' sg body ty
-- if Ψ, i, i = 0 | Γ ⊢ t = l : A
let ctx0 = eqDim (B VZ loc) (K Zero loc) ctx'
lift $ equal loc ctx0 sg ty body $ dweakT 1 l
-- if Ψ, i, i = 1 | Γ ⊢ t = r : A
let ctx1 = eqDim (B VZ loc) (K One loc) ctx'
lift $ equal loc ctx1 sg ty body $ dweakT 1 r
-- then Ψ | Γ ⊢ σ · (δ i ⇒ t) ⇐ Eq [i ⇒ A] l r ⊳ Σ
pure qout
check' ctx sg t@(NAT {}) ty = toCheckType ctx sg t ty
check' ctx sg (Nat {}) ty = do
expectNAT !(askAt DEFS) ctx SZero ty.loc ty
pure $ zeroFor ctx
check' ctx sg (Succ n {}) ty = do
expectNAT !(askAt DEFS) ctx SZero ty.loc ty
checkC ctx sg n ty
check' ctx sg t@(STRING {}) ty = toCheckType ctx sg t ty
check' ctx sg t@(Str s {}) ty = do
expectSTRING !(askAt DEFS) ctx SZero ty.loc ty
pure $ zeroFor ctx
check' ctx sg t@(BOX {}) ty = toCheckType ctx sg t ty
check' ctx sg (Box val loc) ty = do
(q, ty) <- expectBOX !(askAt DEFS) ctx SZero ty.loc ty
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ
valout <- checkC ctx (subjMult sg q) val ty
-- then Ψ | Γ ⊢ σ · [s] ⇐ [π.A] ⊳ πΣ
pure $ q * valout
check' ctx sg (Let qty rhs body loc) ty = do
eres <- inferC ctx (subjMult sg qty) rhs
let sqty = sg.qty * qty
qout <- checkC (extendTyLet sqty body.name eres.type (E rhs) ctx)
sg body.term (weakT 1 ty)
>>= popQ loc sqty
pure $ qty * eres.qout + qout
check' ctx sg (E e) ty = do
-- if Ψ | Γ ⊢ σ · e ⇒ A' ⊳ Σ
infres <- inferC ctx sg e
-- if Ψ | Γ ⊢ A' <: A
lift $ subtype e.loc ctx infres.type ty
-- then Ψ | Γ ⊢ σ · e ⇐ A ⊳ Σ
pure infres.qout
private covering
checkType' : TyContext d n ->
(subj : Term d n) -> (0 nc : NotClo subj) =>
Maybe Universe -> Eff TC ()
checkType' ctx (TYPE k loc) u = do
-- if 𝓀 < then Ψ | Γ ⊢₀ Type 𝓀 ⇐ Type
case u of
Just l => unless (k < l) $ throw $ BadUniverse loc k l
Nothing => pure ()
checkType' ctx (IOState loc) u = pure ()
-- Ψ | Γ ⊢₀ IOState ⇒ Type
checkType' ctx (Pi qty arg res _) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx arg u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
checkTypeScope ctx arg res u
-- then Ψ | Γ ⊢₀ (π·x : A) → B ⇐ Type
checkType' ctx t@(Lam {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Sig fst snd _) u = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx fst u
-- if Ψ | Γ, x : A ⊢₀ B ⇐ Type
checkTypeScope ctx fst snd u
-- then Ψ | Γ ⊢₀ (x : A) × B ⇐ Type
checkType' ctx t@(Pair {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Enum {}) u = pure ()
-- Ψ | Γ ⊢₀ {ts} ⇐ Type
checkType' ctx t@(Tag {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (Eq t l r _) u = do
-- if Ψ, i | Γ ⊢₀ A ⇐ Type
case t.body of
Y t' => checkTypeC (extendDim t.name ctx) t' u
N t' => checkTypeC ctx t' u
-- if Ψ | Γ ⊢₀ l ⇐ A0
check0 ctx l t.zero
-- if Ψ | Γ ⊢₀ r ⇐ A1
check0 ctx r t.one
-- then Ψ | Γ ⊢₀ Eq [i ⇒ A] l r ⇐ Type
checkType' ctx t@(DLam {}) u =
throw $ NotType t.loc ctx t
checkType' ctx (NAT {}) u = pure ()
checkType' ctx t@(Nat {}) u = throw $ NotType t.loc ctx t
checkType' ctx t@(Succ {}) u = throw $ NotType t.loc ctx t
checkType' ctx (STRING loc) u = pure ()
-- Ψ | Γ ⊢₀ STRING ⇒ Type
checkType' ctx t@(Str {}) u = throw $ NotType t.loc ctx t
checkType' ctx (BOX q ty _) u = checkType ctx ty u
checkType' ctx t@(Box {}) u = throw $ NotType t.loc ctx t
checkType' ctx (Let qty rhs body loc) u = do
expectEqualQ loc qty Zero
ety <- inferC ctx SZero rhs
checkType (extendTy Zero body.name ety.type ctx) body.term u
checkType' ctx (E e) u = do
-- if Ψ | Γ ⊢₀ E ⇒ Type
infres <- inferC ctx SZero e
-- if Ψ | Γ ⊢ Type <: Type 𝓀
case u of
Just u => lift $ subtype e.loc ctx infres.type (TYPE u e.loc)
Nothing => ignore $ expectTYPE !(askAt DEFS) ctx SZero e.loc infres.type
-- then Ψ | Γ ⊢₀ E ⇐ Type 𝓀
private covering
checkTypeScope : TyContext d n -> Term d n ->
ScopeTerm d n -> Maybe Universe -> Eff TC ()
checkTypeScope ctx s (S _ (N body)) u = checkType ctx body u
checkTypeScope ctx s (S [< x] (Y body)) u =
checkType (extendTy Zero x s ctx) body u
private covering
infer' : TyContext d n -> SQty ->
(subj : Elim d n) -> (0 nc : NotClo subj) =>
Eff TC (InferResult' d n)
infer' ctx sg (F x u loc) = do
-- if π·x : A {≔ s} in global context
g <- lookupFree x loc !(askAt DEFS)
-- if σ ≤ π
expectCompatQ loc sg.qty g.qty.qty
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ 𝟎
pure $ InfRes {
type = g.typeWithAt ctx.dimLen ctx.termLen u,
qout = zeroFor ctx
}
infer' ctx sg (B i _) =
-- if x : A ∈ Γ
-- then Ψ | Γ ⊢ σ · x ⇒ A ⊳ (𝟎, σ·x, 𝟎)
pure $ lookupBound sg.qty i ctx.tctx
where
lookupBound : forall n. Qty -> Var n -> TContext d n -> InferResult' d n
lookupBound pi VZ (ctx :< var) =
InfRes {type = weakT 1 var.type, qout = zeroFor ctx :< pi}
lookupBound pi (VS i) (ctx :< _) =
let InfRes {type, qout} = lookupBound pi i ctx in
InfRes {type = weakT 1 type, qout = qout :< Zero}
infer' ctx sg (App fun arg loc) = do
-- if Ψ | Γ ⊢ σ · f ⇒ (π·x : A) → B ⊳ Σ₁
funres <- inferC ctx sg fun
(qty, argty, res) <- expectPi !(askAt DEFS) ctx SZero fun.loc funres.type
-- if Ψ | Γ ⊢ σ ⨴ π · s ⇐ A ⊳ Σ₂
argout <- checkC ctx (subjMult sg qty) arg argty
-- then Ψ | Γ ⊢ σ · f s ⇒ B[s] ⊳ Σ₁ + πΣ₂
pure $ InfRes {
type = sub1 res $ Ann arg argty arg.loc,
qout = funres.qout + qty * argout
}
infer' ctx sg (CasePair pi pair ret body loc) = do
-- no check for 1 ≤ π, since pairs have a single constructor.
-- e.g. at 0 the components are also 0 in the body
--
-- if Ψ | Γ ⊢ σ · pair ⇒ (x : A) × B ⊳ Σ₁
pairres <- inferC ctx sg pair
-- if Ψ | Γ, p : (x : A) × B ⊢₀ ret ⇐ Type
checkTypeC (extendTy Zero ret.name pairres.type ctx) ret.term Nothing
(tfst, tsnd) <- expectSig !(askAt DEFS) ctx SZero pair.loc pairres.type
-- if Ψ | Γ, x : A, y : B ⊢ σ · body ⇐
-- ret[(x, y) ∷ (x : A) × B/p] ⊳ Σ₂, ρ₁·x, ρ₂·y
-- with ρ₁, ρ₂ ≤ πσ
let [< x, y] = body.names
pisg = pi * sg.qty
bodyctx = extendTyN [< (pisg, x, tfst), (pisg, y, tsnd.term)] ctx
bodyty = substCasePairRet body.names pairres.type ret
bodyout <- checkC bodyctx sg body.term bodyty >>=
popQs loc [< pisg, pisg]
-- then Ψ | Γ ⊢ σ · caseπ ⋯ ⇒ ret[pair/p] ⊳ πΣ₁ + Σ₂
pure $ InfRes {
type = sub1 ret pair,
qout = pi * pairres.qout + bodyout
}
infer' ctx sg (Fst pair loc) = do
-- if Ψ | Γ ⊢ σ · e ⇒ (x : A) × B ⊳ Σ
pairres <- inferC ctx sg pair
(tfst, _) <- expectSig !(askAt DEFS) ctx SZero pair.loc pairres.type
-- then Ψ | Γ ⊢ σ · fst e ⇒ A ⊳ ωΣ
pure $ InfRes {
type = tfst,
qout = Any * pairres.qout
}
infer' ctx sg (Snd pair loc) = do
-- if Ψ | Γ ⊢ σ · e ⇒ (x : A) × B ⊳ Σ
pairres <- inferC ctx sg pair
(_, tsnd) <- expectSig !(askAt DEFS) ctx SZero pair.loc pairres.type
-- then Ψ | Γ ⊢ σ · snd e ⇒ B[fst e/x] ⊳ ωΣ
pure $ InfRes {
type = sub1 tsnd (Fst pair loc),
qout = Any * pairres.qout
}
infer' ctx sg (CaseEnum pi t ret arms loc) {d, n} = do
-- if Ψ | Γ ⊢ σ · t ⇒ {ts} ⊳ Σ₁
tres <- inferC ctx sg t
ttags <- expectEnum !(askAt DEFS) ctx SZero t.loc tres.type
-- if 1 ≤ π, OR there is only zero or one option
unless (length (SortedSet.toList ttags) <= 1) $ expectCompatQ loc One pi
-- if Ψ | Γ, x : {ts} ⊢₀ A ⇐ Type
checkTypeC (extendTy Zero ret.name tres.type ctx) ret.term Nothing
-- if for each "a ⇒ s" in arms,
-- Ψ | Γ ⊢ σ · s ⇐ A[a ∷ {ts}/x] ⊳ Σᵢ
-- with Σ₂ = lubs Σᵢ
let arms = SortedMap.toList arms
let armTags = SortedSet.fromList $ map fst arms
unless (ttags == armTags) $ throw $ BadCaseEnum loc ttags armTags
armres <- for arms $ \(a, s) =>
checkC ctx sg s $ sub1 ret $ Ann (Tag a s.loc) tres.type s.loc
pure $ InfRes {
type = sub1 ret t,
qout = pi * tres.qout + lubs ctx armres
}
infer' ctx sg (CaseNat pi pi' n ret zer suc loc) = do
-- if 1 ≤ π
expectCompatQ loc One pi
-- if Ψ | Γ ⊢ σ · n ⇒ ⊳ Σn
nres <- inferC ctx sg n
let nat = nres.type
expectNAT !(askAt DEFS) ctx SZero n.loc nat
-- if Ψ | Γ, n : ⊢₀ A ⇐ Type
checkTypeC (extendTy Zero ret.name nat ctx) ret.term Nothing
-- if Ψ | Γ ⊢ σ · zer ⇐ A[0 ∷ /n] ⊳ Σz
zerout <- checkC ctx sg zer $ sub1 ret $ Ann (Zero zer.loc) nat zer.loc
-- if Ψ | Γ, n : , ih : A ⊢ σ · suc ⇐ A[succ p ∷ /n] ⊳ Σs, ρ.p, ς.ih
-- with ς ≤ π'σ, (ρ + ς) ≤ πσ
let [< p, ih] = suc.names
pisg = pi * sg.qty
sucCtx = extendTyN [< (pisg, p, NAT p.loc), (pi', ih, ret.term)] ctx
sucType = substCaseSuccRet suc.names ret
sucout :< qp :< qih <- checkC sucCtx sg suc.term sucType
expectCompatQ loc qih (pi' * sg.qty)
-- [fixme] better error here
expectCompatQ loc (qp + qih) pisg
-- if ς = 0, then Σb = lubs(Σz, Σs), otherwise Σb = Σz + ωςΣs
let bodyout = case qih of
Zero => lubs ctx [zerout, sucout]
_ => zerout + Any * sucout
-- then Ψ | Γ ⊢ caseπ ⋯ ⇒ A[n] ⊳ πΣn + Σb
pure $ InfRes {
type = sub1 ret n,
qout = pi * nres.qout + bodyout
}
infer' ctx sg (CaseBox pi box ret body loc) = do
-- if Ψ | Γ ⊢ σ · b ⇒ [ρ.A] ⊳ Σ₁
boxres <- inferC ctx sg box
(rh, ty) <- expectBOX !(askAt DEFS) ctx SZero box.loc boxres.type
-- if Ψ | Γ, x : [ρ.A] ⊢₀ R ⇐ Type
checkTypeC (extendTy Zero ret.name boxres.type ctx) ret.term Nothing
-- if Ψ | Γ, x : A ⊢ σ · t ⇐ R[[x] ∷ [ρ.A/x]] ⊳ Σ₂, ς·x
-- with ς ≤ ρπσ
let rhpisg = rh * pi * sg.qty
bodyCtx = extendTy rhpisg body.name ty ctx
bodyType = substCaseBoxRet body.name ty ret
bodyout <- checkC bodyCtx sg body.term bodyType >>= popQ loc rhpisg
-- then Ψ | Γ ⊢ caseπ ⋯ ⇒ R[b/x] ⊳ Σ₁ + Σ₂
pure $ InfRes {
type = sub1 ret box,
qout = boxres.qout + bodyout
}
infer' ctx sg (DApp fun dim loc) = do
-- if Ψ | Γ ⊢ σ · f ⇒ Eq [𝑖 ⇒ A] l r ⊳ Σ
InfRes {type, qout} <- inferC ctx sg fun
ty <- fst <$> expectEq !(askAt DEFS) ctx SZero fun.loc type
-- then Ψ | Γ ⊢ σ · f p ⇒ Ap/𝑖 ⊳ Σ
pure $ InfRes {type = dsub1 ty dim, qout}
infer' ctx sg (Coe ty p q val loc) = do
-- if Ψ, 𝑖 | Γ ⊢₀ A ⇐ Type _
checkType (extendDim ty.name ctx) ty.term Nothing
-- if Ψ | Γ ⊢ σ · s ⇐ Ap/𝑖 ⊳ Σ
qout <- checkC ctx sg val $ dsub1 ty p
-- then Ψ | Γ ⊢ σ · coe (𝑖 ⇒ A) @p @q s ⇒ Aq/𝑖 ⊳ Σ
pure $ InfRes {type = dsub1 ty q, qout}
infer' ctx sg (Comp ty p q val r (S [< j0] val0) (S [< j1] val1) loc) = do
-- if Ψ | Γ ⊢₀ A ⇐ Type _
checkType ctx ty Nothing
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
qout <- checkC ctx sg val ty
-- if Ψ, 𝑗, 𝑖=0 | Γ ⊢ σ · t₀ ⇐ A ⊳ Σ₀
-- Ψ, 𝑗, 𝑖=0, 𝑗=p | Γ ⊢ t₀ = s ⇐ A
let ty' = dweakT 1 ty; val' = dweakT 1 val; p' = weakD 1 p
ctx0 = extendDim j0 $ eqDim r (K Zero j0.loc) ctx
val0 = getTerm val0
qout0 <- check ctx0 sg val0 ty'
lift $ equal loc (eqDim (B VZ p.loc) p' ctx0) sg ty' val0 val'
-- if Ψ, 𝑗, 𝑖=1 | Γ ⊢ σ · t₁ ⇐ A ⊳ Σ₁
-- Ψ, 𝑗, 𝑖=1, 𝑗=p | Γ ⊢ t₁ = s ⇐ A
let ctx1 = extendDim j1 $ eqDim r (K One j1.loc) ctx
val1 = getTerm val1
qout1 <- check ctx1 sg val1 ty'
-- if Σ = Σ₀ = Σ₁
lift $ equal loc (eqDim (B VZ p.loc) p' ctx1) sg ty' val1 val'
let qouts = qout :: catMaybes [toMaybe qout0, toMaybe qout1]
-- then Ψ | Γ ⊢ comp A @p @q s @r {0 𝑗 ⇒ t₀; 1 𝑗 ⇒ t₁} ⇒ A ⊳ Σ
pure $ InfRes {type = ty, qout = lubs ctx qouts}
infer' ctx sg (TypeCase ty ret arms def loc) = do
-- if σ = 0
expectEqualQ loc Zero sg.qty
-- if Ψ, Γ ⊢₀ e ⇒ Type u
u <- inferC ctx SZero ty >>=
expectTYPE !(askAt DEFS) ctx SZero ty.loc . type
-- if Ψ, Γ ⊢₀ C ⇐ Type (non-dependent return type)
checkTypeC ctx ret Nothing
-- if Ψ, Γ' ⊢₀ A ⇐ C for each rhs A
for_ allKinds $ \k =>
for_ (lookupPrecise k arms) $ \(S names t) =>
check0 (extendTyN (typecaseTel k names u) ctx)
(getTerm t) (weakT (arity k) ret)
-- then Ψ, Γ ⊢₀ type-case ⋯ ⇒ C
pure $ InfRes {type = ret, qout = zeroFor ctx}
infer' ctx sg (Ann term type loc) = do
-- if Ψ | Γ ⊢₀ A ⇐ Type
checkTypeC ctx type Nothing
-- if Ψ | Γ ⊢ σ · s ⇐ A ⊳ Σ
qout <- checkC ctx sg term type
-- then Ψ | Γ ⊢ σ · (s ∷ A) ⇒ A ⊳ Σ
pure $ InfRes {type, qout}