563 lines
21 KiB
Idris
563 lines
21 KiB
Idris
module Quox.Equal
|
||
|
||
import Quox.BoolExtra
|
||
import public Quox.Typing
|
||
import Data.Maybe
|
||
import Quox.EffExtra
|
||
|
||
%default total
|
||
|
||
|
||
public export
|
||
0 EqModeState : Type -> Type
|
||
EqModeState = State EqMode
|
||
|
||
public export
|
||
0 EqualEff : Type -> List (Type -> Type)
|
||
EqualEff q = [ErrorEff q, EqModeState]
|
||
|
||
public export
|
||
0 EqualE : Type -> Type -> Type
|
||
EqualE q = Eff $ EqualEff q
|
||
|
||
|
||
export %inline
|
||
mode : Has EqModeState fs => Eff fs EqMode
|
||
mode = get
|
||
|
||
|
||
parameters (ctx : EqContext q n)
|
||
private %inline
|
||
clashT : Term q 0 n -> Term q 0 n -> Term q 0 n -> EqualE q a
|
||
clashT ty s t = throw $ ClashT ctx !mode ty s t
|
||
|
||
private %inline
|
||
clashTy : Term q 0 n -> Term q 0 n -> EqualE q a
|
||
clashTy s t = throw $ ClashTy ctx !mode s t
|
||
|
||
private %inline
|
||
clashE : Elim q 0 n -> Elim q 0 n -> EqualE q a
|
||
clashE e f = throw $ ClashE ctx !mode e f
|
||
|
||
private %inline
|
||
wrongType : Term q 0 n -> Term q 0 n -> EqualE q a
|
||
wrongType ty s = throw $ WrongType ctx ty s
|
||
|
||
|
||
||| true if a term is syntactically a type, or is neutral.
|
||
|||
|
||
||| this function *doesn't* push substitutions, because its main use is as a
|
||
||| `So` argument to skip cases that are already known to be nonsense. and
|
||
||| the substitutions have already been pushed.
|
||
public export %inline
|
||
isTyCon : (t : Term {}) -> Bool
|
||
isTyCon (TYPE {}) = True
|
||
isTyCon (Pi {}) = True
|
||
isTyCon (Lam {}) = False
|
||
isTyCon (Sig {}) = True
|
||
isTyCon (Pair {}) = False
|
||
isTyCon (Enum {}) = True
|
||
isTyCon (Tag {}) = False
|
||
isTyCon (Eq {}) = True
|
||
isTyCon (DLam {}) = False
|
||
isTyCon Nat = True
|
||
isTyCon Zero = False
|
||
isTyCon (Succ {}) = False
|
||
isTyCon (BOX {}) = True
|
||
isTyCon (Box {}) = False
|
||
isTyCon (E {}) = True
|
||
isTyCon (CloT {}) = False
|
||
isTyCon (DCloT {}) = False
|
||
|
||
public export %inline
|
||
sameTyCon : (s, t : Term q d n) ->
|
||
(0 ts : So (isTyCon s)) => (0 tt : So (isTyCon t)) =>
|
||
Bool
|
||
sameTyCon (TYPE {}) (TYPE {}) = True
|
||
sameTyCon (TYPE {}) _ = False
|
||
sameTyCon (Pi {}) (Pi {}) = True
|
||
sameTyCon (Pi {}) _ = False
|
||
sameTyCon (Sig {}) (Sig {}) = True
|
||
sameTyCon (Sig {}) _ = False
|
||
sameTyCon (Enum {}) (Enum {}) = True
|
||
sameTyCon (Enum {}) _ = False
|
||
sameTyCon (Eq {}) (Eq {}) = True
|
||
sameTyCon (Eq {}) _ = False
|
||
sameTyCon Nat Nat = True
|
||
sameTyCon Nat _ = False
|
||
sameTyCon (BOX {}) (BOX {}) = True
|
||
sameTyCon (BOX {}) _ = False
|
||
sameTyCon (E {}) (E {}) = True
|
||
sameTyCon (E {}) _ = False
|
||
|
||
|
||
parameters (defs : Definitions' q g)
|
||
||| true if a type is known to be a subsingleton purely by its form.
|
||
||| a subsingleton is a type with only zero or one possible values.
|
||
||| equality/subtyping accepts immediately on values of subsingleton types.
|
||
|||
|
||
||| * a function type is a subsingleton if its codomain is.
|
||
||| * a pair type is a subsingleton if both its elements are.
|
||
||| * all equality types are subsingletons because uip is admissible by
|
||
||| boundary separation.
|
||
||| * an enum type is a subsingleton if it has zero or one tags.
|
||
public export covering
|
||
isSubSing : Has (ErrorEff q) fs =>
|
||
{n : Nat} -> Term q 0 n -> Eff fs Bool
|
||
isSubSing ty0 = do
|
||
Element ty0 nc <- whnfT defs ty0
|
||
case ty0 of
|
||
TYPE _ => pure False
|
||
Pi {res, _} => isSubSing res.term
|
||
Lam {} => pure False
|
||
Sig {fst, snd} => isSubSing fst `andM` isSubSing snd.term
|
||
Pair {} => pure False
|
||
Enum tags => pure $ length (SortedSet.toList tags) <= 1
|
||
Tag {} => pure False
|
||
Eq {} => pure True
|
||
DLam {} => pure False
|
||
Nat => pure False
|
||
Zero => pure False
|
||
Succ {} => pure False
|
||
BOX {ty, _} => isSubSing ty
|
||
Box {} => pure False
|
||
E (s :# _) => isSubSing s
|
||
E _ => pure False
|
||
|
||
|
||
export
|
||
ensureTyCon : Has (ErrorEff q) fs =>
|
||
(ctx : EqContext q n) -> (t : Term q 0 n) ->
|
||
Eff fs (So (isTyCon t))
|
||
ensureTyCon ctx t = case nchoose $ isTyCon t of
|
||
Left y => pure y
|
||
Right n => throw $ NotType (toTyContext ctx) (t // shift0 ctx.dimLen)
|
||
|
||
parameters (defs : Definitions' q _) {auto _ : IsQty q}
|
||
mutual
|
||
namespace Term
|
||
||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to
|
||
||| the current variance `mode`.
|
||
|||
|
||
||| ⚠ **assumes that `s`, `t` have already been checked against `ty`**. ⚠
|
||
export covering %inline
|
||
compare0 : EqContext q n -> (ty, s, t : Term q 0 n) -> EqualE q ()
|
||
compare0 ctx ty s t =
|
||
wrapErr (WhileComparingT ctx !mode ty s t) $ do
|
||
let Val n = ctx.termLen
|
||
Element ty nty <- whnfT defs ty
|
||
Element s ns <- whnfT defs s
|
||
Element t nt <- whnfT defs t
|
||
tty <- ensureTyCon ctx ty
|
||
compare0' ctx ty s t
|
||
|
||
||| converts an elim "Γ ⊢ e" to "Γ, x ⊢ e x", for comparing with
|
||
||| a lambda "Γ ⊢ λx ⇒ t" that has been converted to "Γ, x ⊢ t".
|
||
private %inline
|
||
toLamBody : Elim q d n -> Term q d (S n)
|
||
toLamBody e = E $ weakE e :@ BVT 0
|
||
|
||
private covering
|
||
compare0' : EqContext q n ->
|
||
(ty, s, t : Term q 0 n) ->
|
||
(0 nty : NotRedex defs ty) => (0 tty : So (isTyCon ty)) =>
|
||
(0 ns : NotRedex defs s) => (0 nt : NotRedex defs t) =>
|
||
EqualE q ()
|
||
compare0' ctx (TYPE _) s t = compareType ctx s t
|
||
|
||
compare0' ctx ty@(Pi {qty, arg, res}) s t {n} = local_ Equal $
|
||
case (s, t) of
|
||
-- Γ, x : A ⊢ s = t : B
|
||
-- -------------------------------------------
|
||
-- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) : (π·x : A) → B
|
||
(Lam b1, Lam b2) => compare0 ctx' res.term b1.term b2.term
|
||
|
||
-- Γ, x : A ⊢ s = e x : B
|
||
-- -----------------------------------
|
||
-- Γ ⊢ (λ x ⇒ s) = e : (π·x : A) → B
|
||
(E e, Lam b) => eta e b
|
||
(Lam b, E e) => eta e b
|
||
|
||
(E e, E f) => Elim.compare0 ctx e f
|
||
|
||
(Lam _, t) => wrongType ctx ty t
|
||
(E _, t) => wrongType ctx ty t
|
||
(s, _) => wrongType ctx ty s
|
||
where
|
||
ctx' : EqContext q (S n)
|
||
ctx' = extendTy qty res.name arg ctx
|
||
|
||
eta : Elim q 0 n -> ScopeTerm q 0 n -> EqualE q ()
|
||
eta e (S _ (Y b)) = compare0 ctx' res.term (toLamBody e) b
|
||
eta e (S _ (N _)) = clashT ctx ty s t
|
||
|
||
compare0' ctx ty@(Sig {fst, snd, _}) s t = local_ Equal $
|
||
case (s, t) of
|
||
-- Γ ⊢ s₁ = t₁ : A Γ ⊢ s₂ = t₂ : B{s₁/x}
|
||
-- --------------------------------------------
|
||
-- Γ ⊢ (s₁, t₁) = (s₂,t₂) : (x : A) × B
|
||
--
|
||
-- [todo] η for π ≥ 0 maybe
|
||
(Pair sFst sSnd, Pair tFst tSnd) => do
|
||
compare0 ctx fst sFst tFst
|
||
compare0 ctx (sub1 snd (sFst :# fst)) sSnd tSnd
|
||
|
||
(E e, E f) => Elim.compare0 ctx e f
|
||
|
||
(Pair {}, E _) => clashT ctx ty s t
|
||
(E _, Pair {}) => clashT ctx ty s t
|
||
|
||
(Pair {}, t) => wrongType ctx ty t
|
||
(E _, t) => wrongType ctx ty t
|
||
(s, _) => wrongType ctx ty s
|
||
|
||
compare0' ctx ty@(Enum tags) s t = local_ Equal $
|
||
case (s, t) of
|
||
-- --------------------
|
||
-- Γ ⊢ `t = `t : {ts}
|
||
--
|
||
-- t ∈ ts is in the typechecker, not here, ofc
|
||
(Tag t1, Tag t2) => unless (t1 == t2) $ clashT ctx ty s t
|
||
(E e, E f) => Elim.compare0 ctx e f
|
||
|
||
(Tag _, E _) => clashT ctx ty s t
|
||
(E _, Tag _) => clashT ctx ty s t
|
||
|
||
(Tag _, t) => wrongType ctx ty t
|
||
(E _, t) => wrongType ctx ty t
|
||
(s, _) => wrongType ctx ty s
|
||
|
||
compare0' _ (Eq {}) _ _ =
|
||
-- ✨ uip ✨
|
||
--
|
||
-- Γ ⊢ e = f : Eq [i ⇒ A] s t
|
||
pure ()
|
||
|
||
compare0' ctx Nat s t = local_ Equal $
|
||
case (s, t) of
|
||
-- ---------------
|
||
-- Γ ⊢ 0 = 0 : ℕ
|
||
(Zero, Zero) => pure ()
|
||
|
||
-- Γ ⊢ m = n : ℕ
|
||
-- -------------------------
|
||
-- Γ ⊢ succ m = succ n : ℕ
|
||
(Succ m, Succ n) => compare0 ctx Nat m n
|
||
|
||
(E e, E f) => Elim.compare0 ctx e f
|
||
|
||
(Zero, Succ _) => clashT ctx Nat s t
|
||
(Zero, E _) => clashT ctx Nat s t
|
||
(Succ _, Zero) => clashT ctx Nat s t
|
||
(Succ _, E _) => clashT ctx Nat s t
|
||
(E _, Zero) => clashT ctx Nat s t
|
||
(E _, Succ _) => clashT ctx Nat s t
|
||
|
||
(Zero, t) => wrongType ctx Nat t
|
||
(Succ _, t) => wrongType ctx Nat t
|
||
(E _, t) => wrongType ctx Nat t
|
||
(s, _) => wrongType ctx Nat s
|
||
|
||
compare0' ctx ty@(BOX q ty') s t = local_ Equal $
|
||
case (s, t) of
|
||
-- Γ ⊢ s = t : A
|
||
-- -----------------------
|
||
-- Γ ⊢ [s] = [t] : [π.A]
|
||
(Box s, Box t) => compare0 ctx ty' s t
|
||
|
||
(E e, E f) => Elim.compare0 ctx e f
|
||
|
||
(Box _, t) => wrongType ctx ty t
|
||
(E _, t) => wrongType ctx ty t
|
||
(s, _) => wrongType ctx ty s
|
||
|
||
compare0' ctx ty@(E _) s t = do
|
||
-- a neutral type can only be inhabited by neutral values
|
||
-- e.g. an abstract value in an abstract type, bound variables, …
|
||
E e <- pure s | _ => wrongType ctx ty s
|
||
E f <- pure t | _ => wrongType ctx ty t
|
||
Elim.compare0 ctx e f
|
||
|
||
||| compares two types, using the current variance `mode` for universes.
|
||
||| fails if they are not types, even if they would happen to be equal.
|
||
export covering %inline
|
||
compareType : EqContext q n -> (s, t : Term q 0 n) -> EqualE q ()
|
||
compareType ctx s t = do
|
||
let Val n = ctx.termLen
|
||
Element s ns <- whnfT defs s
|
||
Element t nt <- whnfT defs t
|
||
ts <- ensureTyCon ctx s
|
||
tt <- ensureTyCon ctx t
|
||
st <- either pure (const $ clashTy ctx s t) $
|
||
nchoose $ sameTyCon s t
|
||
compareType' ctx s t
|
||
|
||
private covering
|
||
compareType' : EqContext q n -> (s, t : Term q 0 n) ->
|
||
(0 ns : NotRedex defs s) => (0 ts : So (isTyCon s)) =>
|
||
(0 nt : NotRedex defs t) => (0 tt : So (isTyCon t)) =>
|
||
(0 st : So (sameTyCon s t)) =>
|
||
EqualE q ()
|
||
-- equality is the same as subtyping, except with the
|
||
-- "≤" in the TYPE rule being replaced with "="
|
||
compareType' ctx (TYPE k) (TYPE l) =
|
||
-- 𝓀 ≤ ℓ
|
||
-- ----------------------
|
||
-- Γ ⊢ Type 𝓀 <: Type ℓ
|
||
expectModeU !mode k l
|
||
|
||
compareType' ctx (Pi {qty = sQty, arg = sArg, res = sRes, _})
|
||
(Pi {qty = tQty, arg = tArg, res = tRes, _}) = do
|
||
-- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
||
-- ----------------------------------------
|
||
-- Γ ⊢ (π·x : A₁) → B₁ <: (π·x : A₂) → B₂
|
||
expectEqualQ sQty tQty
|
||
local flip $ compareType ctx sArg tArg -- contra
|
||
compareType (extendTy zero sRes.name sArg ctx) sRes.term tRes.term
|
||
|
||
compareType' ctx (Sig {fst = sFst, snd = sSnd, _})
|
||
(Sig {fst = tFst, snd = tSnd, _}) = do
|
||
-- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂
|
||
-- --------------------------------------
|
||
-- Γ ⊢ (x : A₁) × B₁ <: (x : A₂) × B₂
|
||
compareType ctx sFst tFst
|
||
compareType (extendTy zero sSnd.name sFst ctx) sSnd.term tSnd.term
|
||
|
||
compareType' ctx (Eq {ty = sTy, l = sl, r = sr, _})
|
||
(Eq {ty = tTy, l = tl, r = tr, _}) = do
|
||
-- Γ ⊢ A₁‹ε/i› <: A₂‹ε/i›
|
||
-- Γ ⊢ l₁ = l₂ : A₁‹𝟎/i› Γ ⊢ r₁ = r₂ : A₁‹𝟏/i›
|
||
-- ------------------------------------------------
|
||
-- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂
|
||
compareType (extendDim sTy.name Zero ctx) sTy.zero tTy.zero
|
||
compareType (extendDim sTy.name One ctx) sTy.one tTy.one
|
||
local_ Equal $ do
|
||
Term.compare0 ctx sTy.zero sl tl
|
||
Term.compare0 ctx sTy.one sr tr
|
||
|
||
compareType' ctx s@(Enum tags1) t@(Enum tags2) = do
|
||
-- ------------------
|
||
-- Γ ⊢ {ts} <: {ts}
|
||
--
|
||
-- no subtyping based on tag subsets, since that would need
|
||
-- a runtime coercion
|
||
unless (tags1 == tags2) $ clashTy ctx s t
|
||
|
||
compareType' ctx Nat Nat =
|
||
-- ------------
|
||
-- Γ ⊢ ℕ <: ℕ
|
||
pure ()
|
||
|
||
compareType' ctx (BOX pi a) (BOX rh b) = do
|
||
expectEqualQ pi rh
|
||
compareType ctx a b
|
||
|
||
compareType' ctx (E e) (E f) = do
|
||
-- no fanciness needed here cos anything other than a neutral
|
||
-- has been inlined by whnf
|
||
Elim.compare0 ctx e f
|
||
|
||
||| performs the minimum work required to recompute the type of an elim.
|
||
|||
|
||
||| ⚠ **assumes the elim is already typechecked.** ⚠
|
||
private covering
|
||
computeElimType : EqContext q n -> (e : Elim q 0 n) ->
|
||
(0 ne : NotRedex defs e) ->
|
||
EqualE q (Term q 0 n)
|
||
computeElimType ctx (F x) _ = do
|
||
defs <- lookupFree' defs x
|
||
pure $ injectT ctx defs.type
|
||
computeElimType ctx (B i) _ = pure $ ctx.tctx !! i
|
||
computeElimType ctx (f :@ s) ne = do
|
||
(_, arg, res) <- expectPiE defs ctx !(computeElimType ctx f (noOr1 ne))
|
||
pure $ sub1 res (s :# arg)
|
||
computeElimType ctx (CasePair {pair, ret, _}) _ = pure $ sub1 ret pair
|
||
computeElimType ctx (CaseEnum {tag, ret, _}) _ = pure $ sub1 ret tag
|
||
computeElimType ctx (CaseNat {nat, ret, _}) _ = pure $ sub1 ret nat
|
||
computeElimType ctx (CaseBox {box, ret, _}) _ = pure $ sub1 ret box
|
||
computeElimType ctx (f :% p) ne = do
|
||
(ty, _, _) <- expectEqE defs ctx !(computeElimType ctx f (noOr1 ne))
|
||
pure $ dsub1 ty p
|
||
computeElimType ctx (_ :# ty) _ = pure ty
|
||
|
||
private covering
|
||
replaceEnd : EqContext q n ->
|
||
(e : Elim q 0 n) -> DimConst -> (0 ne : NotRedex defs e) ->
|
||
EqualE q (Elim q 0 n)
|
||
replaceEnd ctx e p ne = do
|
||
(ty, l, r) <- expectEqE defs ctx !(computeElimType ctx e ne)
|
||
pure $ ends l r p :# dsub1 ty (K p)
|
||
|
||
namespace Elim
|
||
-- [fixme] the following code ends up repeating a lot of work in the
|
||
-- computeElimType calls. the results should be shared better
|
||
|
||
||| compare two eliminations according to the given variance `mode`.
|
||
|||
|
||
||| ⚠ **assumes that they have both been typechecked, and have
|
||
||| equal types.** ⚠
|
||
export covering %inline
|
||
compare0 : EqContext q n -> (e, f : Elim q 0 n) -> EqualE q ()
|
||
compare0 ctx e f =
|
||
wrapErr (WhileComparingE ctx !mode e f) $ do
|
||
let Val n = ctx.termLen
|
||
Element e ne <- whnfT defs e
|
||
Element f nf <- whnfT defs f
|
||
-- [fixme] there is a better way to do this "isSubSing" stuff for sure
|
||
unless !(isSubSing defs !(computeElimType ctx e ne)) $
|
||
compare0' ctx e f ne nf
|
||
|
||
private covering
|
||
compare0' : EqContext q n ->
|
||
(e, f : Elim q 0 n) ->
|
||
(0 ne : NotRedex defs e) -> (0 nf : NotRedex defs f) ->
|
||
EqualE q ()
|
||
-- replace applied equalities with the appropriate end first
|
||
-- e.g. e : Eq [i ⇒ A] s t ⊢ e 𝟎 = s : A‹𝟎/i›
|
||
--
|
||
-- [todo] maybe have typed whnf and do this (and η???) there instead
|
||
compare0' ctx (e :% K p) f ne nf =
|
||
compare0 ctx !(replaceEnd ctx e p $ noOr1 ne) f
|
||
compare0' ctx e (f :% K q) ne nf =
|
||
compare0 ctx e !(replaceEnd ctx f q $ noOr1 nf)
|
||
|
||
compare0' ctx e@(F x) f@(F y) _ _ = unless (x == y) $ clashE ctx e f
|
||
compare0' ctx e@(F _) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx e@(B i) f@(B j) _ _ = unless (i == j) $ clashE ctx e f
|
||
compare0' ctx e@(B _) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx (e :@ s) (f :@ t) ne nf =
|
||
local_ Equal $ do
|
||
compare0 ctx e f
|
||
(_, arg, _) <- expectPiE defs ctx !(computeElimType ctx e (noOr1 ne))
|
||
Term.compare0 ctx arg s t
|
||
compare0' ctx e@(_ :@ _) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx (CasePair epi e eret ebody)
|
||
(CasePair fpi f fret fbody) ne nf =
|
||
local_ Equal $ do
|
||
compare0 ctx e f
|
||
ety <- computeElimType ctx e (noOr1 ne)
|
||
compareType (extendTy zero eret.name ety ctx) eret.term fret.term
|
||
(fst, snd) <- expectSigE defs ctx ety
|
||
let [< x, y] = ebody.names
|
||
Term.compare0 (extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx)
|
||
(substCasePairRet ety eret)
|
||
ebody.term fbody.term
|
||
expectEqualQ epi fpi
|
||
compare0' ctx e@(CasePair {}) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx (CaseEnum epi e eret earms)
|
||
(CaseEnum fpi f fret farms) ne nf =
|
||
local_ Equal $ do
|
||
compare0 ctx e f
|
||
ety <- computeElimType ctx e (noOr1 ne)
|
||
compareType (extendTy zero eret.name ety ctx) eret.term fret.term
|
||
for_ !(expectEnumE defs ctx ety) $ \t =>
|
||
compare0 ctx (sub1 eret $ Tag t :# ety)
|
||
!(lookupArm t earms) !(lookupArm t farms)
|
||
expectEqualQ epi fpi
|
||
where
|
||
lookupArm : TagVal -> CaseEnumArms q d n -> EqualE q (Term q d n)
|
||
lookupArm t arms = case lookup t arms of
|
||
Just arm => pure arm
|
||
Nothing => throw $ TagNotIn t (fromList $ keys arms)
|
||
compare0' ctx e@(CaseEnum {}) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx (CaseNat epi epi' e eret ezer esuc)
|
||
(CaseNat fpi fpi' f fret fzer fsuc) ne nf =
|
||
local_ Equal $ do
|
||
compare0 ctx e f
|
||
ety <- computeElimType ctx e (noOr1 ne)
|
||
compareType (extendTy zero eret.name ety ctx) eret.term fret.term
|
||
compare0 ctx (sub1 eret (Zero :# Nat)) ezer fzer
|
||
let [< p, ih] = esuc.names
|
||
compare0 (extendTyN [< (epi, p, Nat), (epi', ih, eret.term)] ctx)
|
||
(substCaseSuccRet eret)
|
||
esuc.term fsuc.term
|
||
expectEqualQ epi fpi
|
||
expectEqualQ epi' fpi'
|
||
compare0' ctx e@(CaseNat {}) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx (CaseBox epi e eret ebody)
|
||
(CaseBox fpi f fret fbody) ne nf =
|
||
local_ Equal $ do
|
||
compare0 ctx e f
|
||
ety <- computeElimType ctx e (noOr1 ne)
|
||
compareType (extendTy zero eret.name ety ctx) eret.term fret.term
|
||
(q, ty) <- expectBOXE defs ctx ety
|
||
compare0 (extendTy (epi * q) ebody.name ty ctx)
|
||
(substCaseBoxRet ety eret)
|
||
ebody.term fbody.term
|
||
expectEqualQ epi fpi
|
||
compare0' ctx e@(CaseBox {}) f _ _ = clashE ctx e f
|
||
|
||
compare0' ctx (s :# a) (t :# b) _ _ =
|
||
Term.compare0 ctx !(bigger a b) s t
|
||
where
|
||
bigger : forall a. a -> a -> EqualE q a
|
||
bigger l r = mode <&> \case Super => l; _ => r
|
||
|
||
compare0' ctx (s :# a) f _ _ = Term.compare0 ctx a s (E f)
|
||
compare0' ctx e (t :# b) _ _ = Term.compare0 ctx b (E e) t
|
||
compare0' ctx e@(_ :# _) f _ _ = clashE ctx e f
|
||
|
||
|
||
parameters {auto _ : (Has (DefsReader' q _) fs, Has (ErrorEff q) fs)}
|
||
{auto _ : IsQty q}
|
||
(ctx : TyContext q d n)
|
||
-- [todo] only split on the dvars that are actually used anywhere in
|
||
-- the calls to `splits`
|
||
|
||
parameters (mode : EqMode)
|
||
namespace Term
|
||
export covering
|
||
compare : (ty, s, t : Term q d n) -> Eff fs ()
|
||
compare ty s t = do
|
||
defs <- ask
|
||
map fst $ runState @{Z} mode $
|
||
for_ (splits ctx.dctx) $ \th =>
|
||
let ectx = makeEqContext ctx th in
|
||
lift $ compare0 defs ectx (ty // th) (s // th) (t // th)
|
||
|
||
export covering
|
||
compareType : (s, t : Term q d n) -> Eff fs ()
|
||
compareType s t = do
|
||
defs <- ask
|
||
map fst $ runState @{Z} mode $
|
||
for_ (splits ctx.dctx) $ \th =>
|
||
let ectx = makeEqContext ctx th in
|
||
lift $ compareType defs ectx (s // th) (t // th)
|
||
|
||
namespace Elim
|
||
||| you don't have to pass the type in but the arguments must still be
|
||
||| of the same type!!
|
||
export covering %inline
|
||
compare : (e, f : Elim q d n) -> Eff fs ()
|
||
compare e f = do
|
||
defs <- ask
|
||
map fst $ runState @{Z} mode $
|
||
for_ (splits ctx.dctx) $ \th =>
|
||
let ectx = makeEqContext ctx th in
|
||
lift $ compare0 defs ectx (e // th) (f // th)
|
||
|
||
namespace Term
|
||
export covering %inline
|
||
equal, sub, super : (ty, s, t : Term q d n) -> Eff fs ()
|
||
equal = compare Equal
|
||
sub = compare Sub
|
||
super = compare Super
|
||
|
||
export covering %inline
|
||
equalType, subtype, supertype : (s, t : Term q d n) -> Eff fs ()
|
||
equalType = compareType Equal
|
||
subtype = compareType Sub
|
||
supertype = compareType Super
|
||
|
||
namespace Elim
|
||
export covering %inline
|
||
equal, sub, super : (e, f : Elim q d n) -> Eff fs ()
|
||
equal = compare Equal
|
||
sub = compare Sub
|
||
super = compare Super
|