quox/lib/Quox/Equal.idr

839 lines
30 KiB
Idris
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Quox.Equal
import Quox.BoolExtra
import public Quox.Typing
import Data.Maybe
import Quox.EffExtra
import Quox.FreeVars
%default total
public export
EqModeState : Type -> Type
EqModeState = State EqMode
public export
Equal : List (Type -> Type)
Equal = [ErrorEff, DefsReader, NameGen]
public export
EqualInner : List (Type -> Type)
EqualInner = [ErrorEff, NameGen, EqModeState]
export %inline
mode : Has EqModeState fs => Eff fs EqMode
mode = get
parameters (loc : Loc) (ctx : EqContext n)
private %inline
clashT : Term 0 n -> Term 0 n -> Term 0 n -> Eff EqualInner a
clashT ty s t = throw $ ClashT loc ctx !mode ty s t
private %inline
clashTy : Term 0 n -> Term 0 n -> Eff EqualInner a
clashTy s t = throw $ ClashTy loc ctx !mode s t
private %inline
wrongType : Term 0 n -> Term 0 n -> Eff EqualInner a
wrongType ty s = throw $ WrongType loc ctx ty s
public export %inline
sameTyCon : (s, t : Term d n) ->
(0 ts : So (isTyConE s)) => (0 tt : So (isTyConE t)) =>
Bool
sameTyCon (TYPE {}) (TYPE {}) = True
sameTyCon (TYPE {}) _ = False
sameTyCon (IOState {}) (IOState {}) = True
sameTyCon (IOState {}) _ = False
sameTyCon (Pi {}) (Pi {}) = True
sameTyCon (Pi {}) _ = False
sameTyCon (Sig {}) (Sig {}) = True
sameTyCon (Sig {}) _ = False
sameTyCon (Enum {}) (Enum {}) = True
sameTyCon (Enum {}) _ = False
sameTyCon (Eq {}) (Eq {}) = True
sameTyCon (Eq {}) _ = False
sameTyCon (NAT {}) (NAT {}) = True
sameTyCon (NAT {}) _ = False
sameTyCon (STRING {}) (STRING {}) = True
sameTyCon (STRING {}) _ = False
sameTyCon (BOX {}) (BOX {}) = True
sameTyCon (BOX {}) _ = False
sameTyCon (E {}) (E {}) = True
sameTyCon (E {}) _ = False
||| true if a type is known to be empty.
|||
||| * a pair is empty if either element is.
||| * `{}` is empty.
||| * `[π.A]` is empty if `A` is.
||| * that's it.
public export covering
isEmpty : Definitions -> EqContext n -> SQty -> Term 0 n ->
Eff EqualInner Bool
isEmpty defs ctx sg ty0 = do
Element ty0 nc <- whnf defs ctx sg ty0.loc ty0
let Left y = choose $ isTyConE ty0
| Right n => pure False
case ty0 of
TYPE {} => pure False
IOState {} => pure False
Pi {arg, res, _} => pure False
Sig {fst, snd, _} =>
isEmpty defs ctx sg fst `orM`
isEmpty defs (extendTy0 snd.name fst ctx) sg snd.term
Enum {cases, _} =>
pure $ null cases
Eq {} => pure False
NAT {} => pure False
STRING {} => pure False
BOX {ty, _} => isEmpty defs ctx sg ty
E _ => pure False
||| true if a type is known to be a subsingleton purely by its form.
||| a subsingleton is a type with only zero or one possible values.
||| equality/subtyping accepts immediately on values of subsingleton types.
|||
||| * a function type is a subsingleton if its codomain is,
||| or if its domain is empty.
||| * a pair type is a subsingleton if both its elements are.
||| * equality types are subsingletons because of uip.
||| * an enum type is a subsingleton if it has zero or one tags.
||| * a box type is a subsingleton if its content is
public export covering
isSubSing : Definitions -> EqContext n -> SQty -> Term 0 n ->
Eff EqualInner Bool
isSubSing defs ctx sg ty0 = do
Element ty0 nc <- whnf defs ctx sg ty0.loc ty0
let Left y = choose $ isTyConE ty0
| Right n => pure False
case ty0 of
TYPE {} => pure False
IOState {} => pure False
Pi {arg, res, _} =>
isEmpty defs ctx sg arg `orM`
isSubSing defs (extendTy0 res.name arg ctx) sg res.term
Sig {fst, snd, _} =>
isSubSing defs ctx sg fst `andM`
isSubSing defs (extendTy0 snd.name fst ctx) sg snd.term
Enum {cases, _} =>
pure $ length (SortedSet.toList cases) <= 1
Eq {} => pure True
NAT {} => pure False
STRING {} => pure False
BOX {ty, _} => isSubSing defs ctx sg ty
E _ => pure False
||| the left argument if the current mode is `Super`; otherwise the right one.
private %inline
bigger : Has EqModeState fs => (left, right : Lazy a) -> Eff fs a
bigger l r = gets $ \case Super => l; _ => r
export
ensureTyCon : Has ErrorEff fs =>
(loc : Loc) -> (ctx : EqContext n) -> (t : Term 0 n) ->
Eff fs (So (isTyConE t))
ensureTyCon loc ctx t = case nchoose $ isTyConE t of
Left y => pure y
Right n => throw $ NotType loc (toTyContext ctx) (t // shift0 ctx.dimLen)
namespace Term
||| `compare0 ctx ty s t` compares `s` and `t` at type `ty`, according to
||| the current variance `mode`.
|||
||| ⚠ **assumes that `s`, `t` have already been checked against `ty`**. ⚠
export covering %inline
compare0 : Definitions -> EqContext n -> SQty -> (ty, s, t : Term 0 n) ->
Eff EqualInner ()
namespace Elim
||| compare two eliminations according to the given variance `mode`.
|||
||| ⚠ **assumes that they have both been typechecked, and have
||| equal types.** ⚠
export covering %inline
compare0 : Definitions -> EqContext n -> SQty -> (e, f : Elim 0 n) ->
Eff EqualInner (Term 0 n)
||| compares two types, using the current variance `mode` for universes.
||| fails if they are not types, even if they would happen to be equal.
export covering %inline
compareType : Definitions -> EqContext n -> (s, t : Term 0 n) ->
Eff EqualInner ()
private
0 NotRedexEq : {isRedex : RedexTest tm} -> CanWhnf tm isRedex =>
Definitions -> EqContext n -> SQty -> Pred (tm 0 n)
NotRedexEq defs ctx sg t = NotRedex defs (toWhnfContext ctx) sg t
namespace Term
private covering
compare0' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
(ty, s, t : Term 0 n) ->
(0 _ : NotRedexEq defs ctx SZero ty) =>
(0 _ : So (isTyConE ty)) =>
(0 _ : NotRedexEq defs ctx sg s) =>
(0 _ : NotRedexEq defs ctx sg t) =>
Eff EqualInner ()
compare0' defs ctx sg (TYPE {}) s t = compareType defs ctx s t
compare0' defs ctx sg ty@(IOState {}) s t =
-- Γ ⊢ e = f ⇒ IOState
-- ----------------------
-- Γ ⊢ e = f ⇐ IOState
--
-- (no canonical values, ofc)
case (s, t) of
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(E _, _) => wrongType t.loc ctx ty t
_ => wrongType s.loc ctx ty s
compare0' defs ctx sg ty@(Pi {qty, arg, res, _}) s t = local_ Equal $
-- Γ ⊢ A empty
-- -------------------------------------------
-- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) ⇐ (π·x : A) → B
if !(isEmpty defs ctx sg arg) then pure () else
case (s, t) of
-- Γ, x : A ⊢ s = t ⇐ B
-- -------------------------------------------
-- Γ ⊢ (λ x ⇒ s) = (λ x ⇒ t) ⇐ (π·x : A) → B
(Lam b1 {}, Lam b2 {}) =>
compare0 defs ctx' sg res.term b1.term b2.term
-- Γ, x : A ⊢ s = e x ⇐ B
-- -----------------------------------
-- Γ ⊢ (λ x ⇒ s) = e ⇐ (π·x : A) → B
(E e, Lam b {}) => eta s.loc e b
(Lam b {}, E e) => eta s.loc e b
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(Lam {}, t) => wrongType t.loc ctx ty t
(E _, t) => wrongType t.loc ctx ty t
(s, _) => wrongType s.loc ctx ty s
where
ctx' : EqContext (S n)
ctx' = extendTy qty res.name arg ctx
toLamBody : Elim d n -> Term d (S n)
toLamBody e = E $ App (weakE 1 e) (BVT 0 e.loc) e.loc
eta : Loc -> Elim 0 n -> ScopeTerm 0 n -> Eff EqualInner ()
eta loc e (S _ (N _)) = clashT loc ctx ty s t
eta _ e (S _ (Y b)) = compare0 defs ctx' sg res.term (toLamBody e) b
compare0' defs ctx sg ty@(Sig {fst, snd, _}) s t = local_ Equal $
case (s, t) of
-- Γ ⊢ s₁ = t₁ ⇐ A Γ ⊢ s₂ = t₂ ⇐ B{s₁/x}
-- --------------------------------------------
-- Γ ⊢ (s₁, t₁) = (s₂,t₂) ⇐ (x : A) × B
(Pair sFst sSnd {}, Pair tFst tSnd {}) => do
compare0 defs ctx sg fst sFst tFst
compare0 defs ctx sg (sub1 snd (Ann sFst fst fst.loc)) sSnd tSnd
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(E e, Pair fst snd _) => eta s.loc e fst snd
(Pair fst snd _, E f) => eta s.loc f fst snd
(Pair {}, t) => wrongType t.loc ctx ty t
(E _, t) => wrongType t.loc ctx ty t
(s, _) => wrongType s.loc ctx ty s
where
eta : Loc -> Elim 0 n -> Term 0 n -> Term 0 n -> Eff EqualInner ()
eta loc e s t =
case sg of
SZero => do
compare0 defs ctx sg fst (E $ Fst e e.loc) s
compare0 defs ctx sg (sub1 snd (Ann s fst s.loc)) (E $ Snd e e.loc) t
SOne => clashT loc ctx ty s t
compare0' defs ctx sg ty@(Enum cases _) s t = local_ Equal $
-- η for empty & singleton enums
if length (SortedSet.toList cases) <= 1 then pure () else
case (s, t) of
-- --------------------
-- Γ ⊢ 't = 't ⇐ {ts}
--
-- t ∈ ts is in the typechecker, not here, ofc
(Tag t1 {}, Tag t2 {}) => unless (t1 == t2) $ clashT s.loc ctx ty s t
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(Tag {}, E _) => clashT s.loc ctx ty s t
(E _, Tag {}) => clashT s.loc ctx ty s t
(Tag {}, t) => wrongType t.loc ctx ty t
(E _, t) => wrongType t.loc ctx ty t
(s, _) => wrongType s.loc ctx ty s
compare0' _ _ _ (Eq {}) _ _ =
-- ✨ uip ✨
--
-- ----------------------------
-- Γ ⊢ e = f ⇐ Eq [i ⇒ A] s t
pure ()
compare0' defs ctx sg nat@(NAT {}) s t = local_ Equal $
case (s, t) of
-- ---------------
-- Γ ⊢ n = n ⇐
(Nat x {}, Nat y {}) => unless (x == y) $ clashT s.loc ctx nat s t
-- Γ ⊢ s = t ⇐
-- -------------------------
-- Γ ⊢ succ s = succ t ⇐
(Succ s' {}, Succ t' {}) => compare0 defs ctx sg nat s' t'
(Nat (S x) {}, Succ t' {}) => compare0 defs ctx sg nat (Nat x s.loc) t'
(Succ s' {}, Nat (S y) {}) => compare0 defs ctx sg nat s' (Nat y t.loc)
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(Nat 0 {}, Succ {}) => clashT s.loc ctx nat s t
(Nat 0 {}, E _) => clashT s.loc ctx nat s t
(Succ {}, Nat 0 {}) => clashT s.loc ctx nat s t
(Succ {}, E _) => clashT s.loc ctx nat s t
(E _, Nat 0 {}) => clashT s.loc ctx nat s t
(E _, Succ {}) => clashT s.loc ctx nat s t
(Nat {}, t) => wrongType t.loc ctx nat t
(Succ {}, t) => wrongType t.loc ctx nat t
(E _, t) => wrongType t.loc ctx nat t
(s, _) => wrongType s.loc ctx nat s
compare0' defs ctx sg str@(STRING {}) s t = local_ Equal $
case (s, t) of
(Str x _, Str y _) => unless (x == y) $ clashT s.loc ctx str s t
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(Str {}, E _) => clashT s.loc ctx str s t
(E _, Str {}) => clashT s.loc ctx str s t
(Str {}, _) => wrongType t.loc ctx str t
(E _, _) => wrongType t.loc ctx str t
_ => wrongType s.loc ctx str s
compare0' defs ctx sg bty@(BOX q ty {}) s t = local_ Equal $
case (s, t) of
-- Γ ⊢ s = t ⇐ A
-- -----------------------
-- Γ ⊢ [s] = [t] ⇐ [π.A]
(Box s _, Box t _) => compare0 defs ctx sg ty s t
-- Γ ⊢ σ⨴ρ · s = (case1 e return A of {[x] ⇒ x}) ⇐ A
-- -----------------------------------------------------
-- Γ ⊢ σ · [s] = e ⇐ [ρ.A]
(Box s loc, E f) => eta s f
(E e, Box t loc) => eta t e
(E e, E f) => ignore $ Elim.compare0 defs ctx sg e f
(Box {}, _) => wrongType t.loc ctx bty t
(E _, _) => wrongType t.loc ctx bty t
_ => wrongType s.loc ctx bty s
where
eta : Term 0 n -> Elim 0 n -> Eff EqualInner ()
eta s e = do
nm <- mnb "inner" e.loc
let e = CaseBox One e (SN ty) (SY [< nm] (BVT 0 nm.loc)) e.loc
compare0 defs ctx (sg `subjMult` q) ty s (E e)
compare0' defs ctx sg ty@(E _) s t = do
-- a neutral type can only be inhabited by neutral values
-- e.g. an abstract value in an abstract type, bound variables, …
let E e = s | _ => wrongType s.loc ctx ty s
E f = t | _ => wrongType t.loc ctx ty t
ignore $ Elim.compare0 defs ctx sg e f
private covering
compareType' : (defs : Definitions) -> (ctx : EqContext n) ->
(s, t : Term 0 n) ->
(0 _ : NotRedexEq defs ctx SZero s) => (0 _ : So (isTyConE s)) =>
(0 _ : NotRedexEq defs ctx SZero t) => (0 _ : So (isTyConE t)) =>
(0 _ : So (sameTyCon s t)) =>
Eff EqualInner ()
-- equality is the same as subtyping, except with the
-- "≤" in the TYPE rule being replaced with "="
compareType' defs ctx a@(TYPE k {}) (TYPE l {}) =
-- 𝓀
-- ----------------------
-- Γ ⊢ Type 𝓀 <: Type
expectModeU a.loc !mode k l
compareType' defs ctx a@(IOState {}) (IOState {}) =
-- Γ ⊢ IOState <: IOState
pure ()
compareType' defs ctx (Pi {qty = sQty, arg = sArg, res = sRes, loc})
(Pi {qty = tQty, arg = tArg, res = tRes, _}) = do
-- Γ ⊢ A₁ :> A₂ Γ, x : A₁ ⊢ B₁ <: B₂
-- ----------------------------------------
-- Γ ⊢ (π·x : A₁) → B₁ <: (π·x : A₂) → B₂
expectEqualQ loc sQty tQty
local flip $ compareType defs ctx sArg tArg -- contra
compareType defs (extendTy0 sRes.name sArg ctx) sRes.term tRes.term
compareType' defs ctx (Sig {fst = sFst, snd = sSnd, _})
(Sig {fst = tFst, snd = tSnd, _}) = do
-- Γ ⊢ A₁ <: A₂ Γ, x : A₁ ⊢ B₁ <: B₂
-- --------------------------------------
-- Γ ⊢ (x : A₁) × B₁ <: (x : A₂) × B₂
compareType defs ctx sFst tFst
compareType defs (extendTy0 sSnd.name sFst ctx) sSnd.term tSnd.term
compareType' defs ctx (Eq {ty = sTy, l = sl, r = sr, _})
(Eq {ty = tTy, l = tl, r = tr, _}) = do
-- Γ ⊢ A₁ε/i <: A₂ε/i
-- Γ ⊢ l₁ = l₂ : A₁𝟎/i Γ ⊢ r₁ = r₂ : A₁𝟏/i
-- ------------------------------------------------
-- Γ ⊢ Eq [i ⇒ A₁] l₁ r₂ <: Eq [i ⇒ A₂] l₂ r₂
compareType defs (extendDim sTy.name Zero ctx) sTy.zero tTy.zero
compareType defs (extendDim sTy.name One ctx) sTy.one tTy.one
ty <- bigger sTy tTy
local_ Equal $ do
Term.compare0 defs ctx SZero ty.zero sl tl
Term.compare0 defs ctx SZero ty.one sr tr
compareType' defs ctx s@(Enum tags1 {}) t@(Enum tags2 {}) = do
-- ------------------
-- Γ ⊢ {ts} <: {ts}
--
-- no subtyping based on tag subsets, since that would need
-- a runtime coercion
unless (tags1 == tags2) $ clashTy s.loc ctx s t
compareType' defs ctx (NAT {}) (NAT {}) =
-- ------------
-- Γ ⊢ <:
pure ()
compareType' defs ctx (STRING {}) (STRING {}) =
-- ------------
-- Γ ⊢ String <: String
pure ()
compareType' defs ctx (BOX pi a loc) (BOX rh b {}) = do
expectEqualQ loc pi rh
compareType defs ctx a b
compareType' defs ctx (E e) (E f) = do
-- no fanciness needed here cos anything other than a neutral
-- has been inlined by whnf
ignore $ Elim.compare0 defs ctx SZero e f
private
lookupFree : Has ErrorEff fs =>
Definitions -> EqContext n -> Name -> Universe -> Loc ->
Eff fs (Term 0 n)
lookupFree defs ctx x u loc =
case lookup x defs of
Nothing => throw $ NotInScope loc x
Just d => pure $ d.typeWithAt [|Z|] ctx.termLen u
export
typecaseTel : (k : TyConKind) -> BContext (arity k) -> Universe ->
CtxExtension d n (arity k + n)
typecaseTel k xs u = case k of
KTYPE => [<]
KIOState => [<]
-- A : ★ᵤ, B : 0.A → ★ᵤ
KPi =>
let [< a, b] = xs in
[< (Zero, a, TYPE u a.loc),
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)]
KSig =>
let [< a, b] = xs in
[< (Zero, a, TYPE u a.loc),
(Zero, b, Arr Zero (BVT 0 b.loc) (TYPE u b.loc) b.loc)]
KEnum => [<]
-- A₀ : ★ᵤ, A₁ : ★ᵤ, A : (A₀ ≡ A₁ : ★ᵤ), L : A₀, R : A₀
KEq =>
let [< a0, a1, a, l, r] = xs in
[< (Zero, a0, TYPE u a0.loc),
(Zero, a1, TYPE u a1.loc),
(Zero, a, Eq0 (TYPE u a.loc) (BVT 1 a.loc) (BVT 0 a.loc) a.loc),
(Zero, l, BVT 2 l.loc),
(Zero, r, BVT 2 r.loc)]
KNat => [<]
KString => [<]
-- A : ★ᵤ
KBOX => let [< a] = xs in [< (Zero, a, TYPE u a.loc)]
namespace Elim
private data InnerErr : Type where
private
InnerErrEff : Type -> Type
InnerErrEff = StateL InnerErr (Maybe Error)
private
EqualElim : List (Type -> Type)
EqualElim = InnerErrEff :: EqualInner
private covering
computeElimTypeE : (defs : Definitions) -> (ctx : EqContext n) ->
(sg : SQty) ->
(e : Elim 0 n) -> (0 ne : NotRedexEq defs ctx sg e) =>
Eff EqualElim (Term 0 n)
computeElimTypeE defs ectx sg e = lift $
computeElimType defs (toWhnfContext ectx) sg e
private
putError : Has InnerErrEff fs => Error -> Eff fs ()
putError err = modifyAt InnerErr (<|> Just err)
private
try : Eff EqualInner () -> Eff EqualElim ()
try act = lift $ catch putError $ lift act {fs' = EqualElim}
private covering %inline
clashE : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
(e, f : Elim 0 n) -> (0 nf : NotRedexEq defs ctx sg f) =>
Eff EqualElim (Term 0 n)
clashE defs ctx sg e f = do
putError $ ClashE e.loc ctx !mode e f
computeElimTypeE defs ctx sg f
||| compare two type-case branches, which came from the arms of the given
||| kind. `ret` is the return type of the case expression, and `u` is the
||| universe the head is in.
private covering
compareArm : Definitions -> EqContext n -> (k : TyConKind) ->
(ret : Term 0 n) -> (u : Universe) ->
(b1, b2 : Maybe (TypeCaseArmBody k 0 n)) ->
(def : Term 0 n) ->
Eff EqualElim ()
compareArm {b1 = Nothing, b2 = Nothing, _} = pure ()
compareArm defs ctx k ret u b1 b2 def = do
let def = SN def
left = fromMaybe def b1; right = fromMaybe def b2
names = (fromMaybe def $ b1 <|> b2).names
try $ compare0 defs (extendTyN (typecaseTel k names u) ctx)
SZero (weakT (arity k) ret) left.term right.term
private covering
compare0Inner : Definitions -> EqContext n -> (sg : SQty) ->
(e, f : Elim 0 n) -> Eff EqualElim (Term 0 n)
private covering
compare0Inner' : (defs : Definitions) -> (ctx : EqContext n) -> (sg : SQty) ->
(e, f : Elim 0 n) ->
(0 ne : NotRedexEq defs ctx sg e) ->
(0 nf : NotRedexEq defs ctx sg f) ->
Eff EqualElim (Term 0 n)
compare0Inner' defs ctx sg e@(F {}) f _ _ = do
if e == f then computeElimTypeE defs ctx sg f
else clashE defs ctx sg e f
compare0Inner' defs ctx sg e@(B {}) f _ _ = do
if e == f then computeElimTypeE defs ctx sg f
else clashE defs ctx sg e f
-- Ψ | Γ ⊢ e = f ⇒ π.(x : A) → B
-- Ψ | Γ ⊢ s = t ⇐ A
-- -------------------------------
-- Ψ | Γ ⊢ e s = f t ⇒ B[s∷A/x]
compare0Inner' defs ctx sg (App e s eloc) (App f t floc) ne nf = do
ety <- compare0Inner defs ctx sg e f
(_, arg, res) <- expectPi defs ctx sg eloc ety
try $ Term.compare0 defs ctx sg arg s t
pure $ sub1 res $ Ann s arg s.loc
compare0Inner' defs ctx sg e'@(App {}) f' ne nf =
clashE defs ctx sg e' f'
-- Ψ | Γ ⊢ e = f ⇒ (x : A) × B
-- Ψ | Γ, 0.p : (x : A) × B ⊢ Q = R
-- Ψ | Γ, x : A, y : B ⊢ s = t ⇐ Q[((x, y) ∷ (x : A) × B)/p]
-- -----------------------------------------------------------
-- Ψ | Γ ⊢ caseπ e return Q of { (x, y) ⇒ s }
-- = caseπ f return R of { (x, y) ⇒ t } ⇒ Q[e/p]
compare0Inner' defs ctx sg (CasePair epi e eret ebody eloc)
(CasePair fpi f fret fbody floc) ne nf =
local_ Equal $ do
ety <- compare0Inner defs ctx sg e f
(fst, snd) <- expectSig defs ctx sg eloc ety
let [< x, y] = ebody.names
try $ do
compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term
Term.compare0 defs
(extendTyN [< (epi, x, fst), (epi, y, snd.term)] ctx) sg
(substCasePairRet ebody.names ety eret)
ebody.term fbody.term
expectEqualQ e.loc epi fpi
pure $ sub1 eret e
compare0Inner' defs ctx sg e'@(CasePair {}) f' ne nf =
clashE defs ctx sg e' f'
-- Ψ | Γ ⊢ e = f ⇒ (x : A) × B
-- ------------------------------
-- Ψ | Γ ⊢ fst e = fst f ⇒ A
compare0Inner' defs ctx sg (Fst e eloc) (Fst f floc) ne nf =
local_ Equal $ do
ety <- compare0Inner defs ctx sg e f
fst <$> expectSig defs ctx sg eloc ety
compare0Inner' defs ctx sg e@(Fst {}) f _ _ =
clashE defs ctx sg e f
-- Ψ | Γ ⊢ e = f ⇒ (x : A) × B
-- ------------------------------------
-- Ψ | Γ ⊢ snd e = snd f ⇒ B[fst e/x]
compare0Inner' defs ctx sg (Snd e eloc) (Snd f floc) ne nf =
local_ Equal $ do
ety <- compare0Inner defs ctx sg e f
(_, tsnd) <- expectSig defs ctx sg eloc ety
pure $ sub1 tsnd (Fst e eloc)
compare0Inner' defs ctx sg e@(Snd {}) f _ _ =
clashE defs ctx sg e f
-- Ψ | Γ ⊢ e = f ⇒ {𝐚s}
-- Ψ | Γ, x : {𝐚s} ⊢ Q = R
-- Ψ | Γ ⊢ sᵢ = tᵢ ⇐ Q[𝐚ᵢ∷{𝐚s}]
-- --------------------------------------------------
-- Ψ | Γ ⊢ caseπ e return Q of { '𝐚ᵢ ⇒ sᵢ }
-- = caseπ f return R of { '𝐚ᵢ ⇒ tᵢ } ⇒ Q[e/x]
compare0Inner' defs ctx sg (CaseEnum epi e eret earms eloc)
(CaseEnum fpi f fret farms floc) ne nf =
local_ Equal $ do
ety <- compare0Inner defs ctx sg e f
try $
compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term
for_ (SortedMap.toList earms) $ \(t, l) => do
let Just r = lookup t farms
| Nothing => putError $ TagNotIn floc t (fromList $ keys farms)
let t' = Ann (Tag t l.loc) ety l.loc
try $ Term.compare0 defs ctx sg (sub1 eret t') l r
try $ expectEqualQ eloc epi fpi
pure $ sub1 eret e
compare0Inner' defs ctx sg e@(CaseEnum {}) f _ _ = clashE defs ctx sg e f
-- Ψ | Γ ⊢ e = f ⇒
-- Ψ | Γ, x : ⊢ Q = R
-- Ψ | Γ ⊢ s₀ = t₀ ⇐ Q[(0 ∷ )/x]
-- Ψ | Γ, x : , y : Q ⊢ s₁ = t₁ ⇐ Q[(succ x ∷ )/x]
-- -----------------------------------------------------
-- Ψ | Γ ⊢ caseπ e return Q of { 0 ⇒ s₀; x, π.y ⇒ s₁ }
-- = caseπ f return R of { 0 ⇒ t₀; x, π.y ⇒ t₁ }
-- ⇒ Q[e/x]
compare0Inner' defs ctx sg (CaseNat epi epi' e eret ezer esuc eloc)
(CaseNat fpi fpi' f fret fzer fsuc floc) ne nf =
local_ Equal $ do
ety <- compare0Inner defs ctx sg e f
let [< p, ih] = esuc.names
try $ do
compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term
Term.compare0 defs ctx sg
(sub1 eret (Ann (Zero ezer.loc) (NAT ezer.loc) ezer.loc))
ezer fzer
Term.compare0 defs
(extendTyN [< (epi, p, NAT p.loc), (epi', ih, eret.term)] ctx) sg
(substCaseSuccRet esuc.names eret) esuc.term fsuc.term
expectEqualQ e.loc epi fpi
expectEqualQ e.loc epi' fpi'
pure $ sub1 eret e
compare0Inner' defs ctx sg e@(CaseNat {}) f _ _ = clashE defs ctx sg e f
-- Ψ | Γ ⊢ e = f ⇒ [ρ. A]
-- Ψ | Γ, x : [ρ. A] ⊢ Q = R
-- Ψ | Γ, x : A ⊢ s = t ⇐ Q[([x] ∷ [ρ. A])/x]
-- --------------------------------------------------
-- Ψ | Γ ⊢ caseπ e return Q of { [x] ⇒ s }
-- = caseπ f return R of { [x] ⇒ t } ⇒ Q[e/x]
compare0Inner' defs ctx sg (CaseBox epi e eret ebody eloc)
(CaseBox fpi f fret fbody floc) ne nf =
local_ Equal $ do
ety <- compare0Inner defs ctx sg e f
(q, ty) <- expectBOX defs ctx sg eloc ety
try $ do
compareType defs (extendTy0 eret.name ety ctx) eret.term fret.term
Term.compare0 defs (extendTy (epi * q) ebody.name ty ctx) sg
(substCaseBoxRet ebody.name ety eret)
ebody.term fbody.term
expectEqualQ eloc epi fpi
pure $ sub1 eret e
compare0Inner' defs ctx sg e@(CaseBox {}) f _ _ = clashE defs ctx sg e f
-- (no neutral dim apps in a closed dctx)
compare0Inner' _ _ _ (DApp _ (K {}) _) _ ne _ =
void $ absurd $ noOr2 $ noOr2 ne
compare0Inner' _ _ _ _ (DApp _ (K {}) _) _ nf =
void $ absurd $ noOr2 $ noOr2 nf
-- Ψ | Γ ⊢ s <: t : B
-- --------------------------------
-- Ψ | Γ ⊢ (s ∷ A) <: (t ∷ B) ⇒ B
--
-- and similar for :> and A
compare0Inner' defs ctx sg (Ann s a _) (Ann t b _) _ _ = do
ty <- bigger a b
try $ Term.compare0 defs ctx sg ty s t
pure ty
-- Ψ | Γ ⊢ Ap₁/𝑖 <: Bp₂/𝑖
-- Ψ | Γ ⊢ Aq₁/𝑖 <: Bq₂/𝑖
-- Ψ | Γ ⊢ s <: t ⇐ Bp₂/𝑖
-- -----------------------------------------------------------
-- Ψ | Γ ⊢ coe [𝑖 ⇒ A] @p₁ @q₁ s
-- <: coe [𝑖 ⇒ B] @p₂ @q₂ t ⇒ Bq₂/𝑖
compare0Inner' defs ctx sg (Coe ty1 p1 q1 val1 _)
(Coe ty2 p2 q2 val2 _) ne nf = do
let ty1p = dsub1 ty1 p1; ty2p = dsub1 ty2 p2
ty1q = dsub1 ty1 q1; ty2q = dsub1 ty2 q2
(ty_p, ty_q) <- bigger (ty1p, ty1q) (ty2p, ty2q)
try $ do
compareType defs ctx ty1p ty2p
compareType defs ctx ty1q ty2q
Term.compare0 defs ctx sg ty_p val1 val2
pure $ ty_q
compare0Inner' defs ctx sg e@(Coe {}) f _ _ = clashE defs ctx sg e f
-- (no neutral compositions in a closed dctx)
compare0Inner' _ _ _ (Comp {r = K {}, _}) _ ne _ = void $ absurd $ noOr2 ne
compare0Inner' _ _ _ (Comp {r = B i _, _}) _ _ _ = absurd i
compare0Inner' _ _ _ _ (Comp {r = K {}, _}) _ nf = void $ absurd $ noOr2 nf
-- (type case equality purely structural)
compare0Inner' defs ctx sg (TypeCase ty1 ret1 arms1 def1 eloc)
(TypeCase ty2 ret2 arms2 def2 floc) ne _ =
case sg `decEq` SZero of
Yes Refl => local_ Equal $ do
ety <- compare0Inner defs ctx SZero ty1 ty2
u <- expectTYPE defs ctx SZero eloc ety
try $ do
compareType defs ctx ret1 ret2
compareType defs ctx def1 def2
for_ allKinds $ \k =>
compareArm defs ctx k ret1 u
(lookupPrecise k arms1) (lookupPrecise k arms2) def1
pure ret1
No _ => do
putError $ ClashQ eloc sg.qty Zero
computeElimTypeE defs ctx sg $ TypeCase ty1 ret1 arms1 def1 eloc
compare0Inner' defs ctx sg e@(TypeCase {}) f _ _ = clashE defs ctx sg e f
-- Ψ | Γ ⊢ s <: f ⇐ A
-- --------------------------
-- Ψ | Γ ⊢ (s ∷ A) <: f ⇒ A
--
-- and vice versa
compare0Inner' defs ctx sg (Ann s a _) f _ _ = do
try $ Term.compare0 defs ctx sg a s (E f)
pure a
compare0Inner' defs ctx sg e (Ann t b _) _ _ = do
try $ Term.compare0 defs ctx sg b (E e) t
pure b
compare0Inner' defs ctx sg e@(Ann {}) f _ _ =
clashE defs ctx sg e f
compare0Inner defs ctx sg e f = do
Element e ne <- whnf defs ctx sg e.loc e
Element f nf <- whnf defs ctx sg f.loc f
ty <- compare0Inner' defs ctx sg e f ne nf
if !(lift $ isSubSing defs ctx sg ty) && isJust !(getAt InnerErr)
then putAt InnerErr Nothing
else modifyAt InnerErr $ map $ WhileComparingE ctx !mode sg e f
pure ty
namespace Term
compare0 defs ctx sg ty s t =
wrapErr (WhileComparingT ctx !mode sg ty s t) $ do
Element ty' _ <- whnf defs ctx SZero ty.loc ty
Element s' _ <- whnf defs ctx sg s.loc s
Element t' _ <- whnf defs ctx sg t.loc t
tty <- ensureTyCon ty.loc ctx ty'
compare0' defs ctx sg ty' s' t'
namespace Elim
compare0 defs ctx sg e f = do
(ty, err) <- runStateAt InnerErr Nothing $ compare0Inner defs ctx sg e f
maybe (pure ty) throw err
compareType defs ctx s t = do
Element s' _ <- whnf defs ctx SZero s.loc s
Element t' _ <- whnf defs ctx SZero t.loc t
ts <- ensureTyCon s.loc ctx s'
tt <- ensureTyCon t.loc ctx t'
st <- either pure (const $ clashTy s.loc ctx s' t') $
nchoose $ sameTyCon s' t'
compareType' defs ctx s' t'
parameters (loc : Loc) (ctx : TyContext d n)
parameters (mode : EqMode)
private
fromInner : Eff EqualInner a -> Eff Equal a
fromInner = lift . map fst . runState mode
private
eachFace : Applicative f => FreeVars d ->
(EqContext n -> DSubst d 0 -> f ()) -> f ()
eachFace fvs act =
for_ (splits loc ctx.dctx fvs) $ \th =>
act (makeEqContext ctx th) th
private
CompareAction : Nat -> Nat -> Type
CompareAction d n =
Definitions -> EqContext n -> DSubst d 0 -> Eff EqualInner ()
private
runCompare : FreeVars d -> CompareAction d n -> Eff Equal ()
runCompare fvs act = fromInner $ eachFace fvs $ act !(askAt DEFS)
private
fdvAll : HasFreeDVars t => List (t d n) -> FreeVars d
fdvAll = let Val d = ctx.dimLen in foldMap (fdvWith [|d|] ctx.termLen)
namespace Term
export covering
compare : SQty -> (ty, s, t : Term d n) -> Eff Equal ()
compare sg ty s t = runCompare (fdvAll [ty, s, t]) $ \defs, ectx, th =>
compare0 defs ectx sg (ty // th) (s // th) (t // th)
export covering
compareType : (s, t : Term d n) -> Eff Equal ()
compareType s t = runCompare (fdvAll [s, t]) $ \defs, ectx, th =>
compareType defs ectx (s // th) (t // th)
namespace Elim
||| you don't have to pass the type in but the arguments must still be
||| of the same type!!
export covering
compare : SQty -> (e, f : Elim d n) -> Eff Equal ()
compare sg e f = runCompare (fdvAll [e, f]) $ \defs, ectx, th =>
ignore $ compare0 defs ectx sg (e // th) (f // th)
namespace Term
export covering %inline
equal, sub, super : SQty -> (ty, s, t : Term d n) -> Eff Equal ()
equal = compare Equal
sub = compare Sub
super = compare Super
export covering %inline
equalType, subtype, supertype : (s, t : Term d n) -> Eff Equal ()
equalType = compareType Equal
subtype = compareType Sub
supertype = compareType Super
namespace Elim
export covering %inline
equal, sub, super : SQty -> (e, f : Elim d n) -> Eff Equal ()
equal = compare Equal
sub = compare Sub
super = compare Super