quox/tests/Tests/Reduce.idr

115 lines
3.4 KiB
Idris

module Tests.Reduce
import Quox.Syntax as Lib
import Quox.Syntax.Qty.Three
import Quox.Equal
import TermImpls
import TypingImpls
import TAP
parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex err}
{auto _ : ToInfo err}
{auto _ : forall d, n. Eq (tm Three d n)}
{auto _ : forall d, n. Show (tm Three d n)}
{default empty defs : Definitions Three}
{default 0 d, n : Nat}
testWhnf : String -> tm Three d n -> tm Three d n -> Test
testWhnf label from to = test "\{label} (whnf)" $ do
result <- bimap toInfo fst $ whnf defs from
unless (result == to) $ Left [("exp", show to), ("got", show result)]
testNoStep : String -> tm Three d n -> Test
testNoStep label e = testWhnf label e e
tests = "whnf" :- [
"head constructors" :- [
testNoStep "★₀" $ TYPE 0,
testNoStep "[A] ⊸ [B]" $
Arr One (FT "A") (FT "B"),
testNoStep "(x: [A]) ⊸ [B [x]]" $
Pi One (FT "A") (S ["x"] $ Y $ E $ F "B" :@ BVT 0),
testNoStep "λx. [x]" $
Lam $ S ["x"] $ Y $ BVT 0,
testNoStep "[f [a]]" $
E $ F "f" :@ FT "a"
],
"neutrals" :- [
testNoStep "x" {n = 1} $ BV 0,
testNoStep "a" $ F "a",
testNoStep "f [a]" $ F "f" :@ FT "a",
testNoStep "★₀ ∷ ★₁" $ TYPE 0 :# TYPE 1
],
"redexes" :- [
testWhnf "[a] ∷ [A]"
(FT "a" :# FT "A")
(F "a"),
testWhnf "[★₁ ∷ ★₃]"
(E (TYPE 1 :# TYPE 3))
(TYPE 1),
testWhnf "(λx. [x] ∷ [A] ⊸ [A]) [a]"
(((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(F "a")
],
"definitions" :- [
testWhnf "a (transparent)"
{defs = fromList [("a", mkDef Zero (TYPE 1) (TYPE 0))]}
(F "a") (TYPE 0 :# TYPE 1)
],
"elim closure" :- [
testWhnf "x{}" {n = 1}
(CloE (BV 0) id)
(BV 0),
testWhnf "x{a/x}"
(CloE (BV 0) (F "a" ::: id))
(F "a"),
testWhnf "x{x/x,a/y}" {n = 1}
(CloE (BV 0) (BV 0 ::: F "a" ::: id))
(BV 0),
testWhnf "x{(y{a/y})/x}"
(CloE (BV 0) ((CloE (BV 0) (F "a" ::: id)) ::: id))
(F "a"),
testWhnf "(x y){f/x,a/y}"
(CloE (BV 0 :@ BVT 1) (F "f" ::: F "a" ::: id))
(F "f" :@ FT "a"),
testWhnf "([y] ∷ [x]){A/x}" {n = 1}
(CloE (BVT 1 :# BVT 0) (F "A" ::: id))
(BV 0),
testWhnf "([y] ∷ [x]){A/x,a/y}"
(CloE (BVT 1 :# BVT 0) (F "A" ::: F "a" ::: id))
(F "a")
],
"term closure" :- [
testWhnf "(λy. x){a/x}"
(CloT (Lam $ S ["y"] $ N $ BVT 0) (F "a" ::: id))
(Lam $ S ["y"] $ N $ FT "a"),
testWhnf "(λy. y){a/x}"
(CloT (["y"] :\\ BVT 0) (F "a" ::: id))
(["y"] :\\ BVT 0)
],
"looking inside […]" :- [
testWhnf "[(λx. x ∷ A ⊸ A) [a]]"
(E $ ((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
(FT "a")
],
"nested redex" :- [
note "whnf only looks at top level redexes",
testNoStep "λy. [(λx. [x] ∷ [A] ⊸ [A]) [y]]" $
["y"] :\\ E (((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ BVT 0),
testNoStep "f [(λx. [x] ∷ [A] ⊸ [A]) [a]]" $
F "a" :@
E (((["x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a"),
testNoStep "λx. [y [x]]{x/x,a/y}" {n = 1} $
["x"] :\\ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id),
testNoStep "f ([y [x]]{x/x,a/y})" {n = 1} $
F "f" :@ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id)
]
]