309 lines
9.1 KiB
Idris
309 lines
9.1 KiB
Idris
module Quox.FreeVars
|
|
|
|
import Quox.Syntax.Term.Base
|
|
import Data.Maybe
|
|
import Data.Nat
|
|
import Data.Singleton
|
|
import Data.SortedSet
|
|
import Derive.Prelude
|
|
|
|
%language ElabReflection
|
|
|
|
|
|
public export
|
|
FreeVars' : Nat -> Type
|
|
FreeVars' n = Context' Bool n
|
|
|
|
public export
|
|
record FreeVars n where
|
|
constructor FV
|
|
vars : FreeVars' n
|
|
%name FreeVars xs
|
|
|
|
%runElab deriveIndexed "FreeVars" [Eq, Ord, Show]
|
|
|
|
|
|
export %inline
|
|
(||) : FreeVars n -> FreeVars n -> FreeVars n
|
|
FV s || FV t = FV $ zipWith (\x, y => x || y) s t
|
|
|
|
export %inline
|
|
(&&) : FreeVars n -> FreeVars n -> FreeVars n
|
|
FV s && FV t = FV $ zipWith (\x, y => x && y) s t
|
|
|
|
export %inline Semigroup (FreeVars n) where (<+>) = (||)
|
|
|
|
export %inline [AndS] Semigroup (FreeVars n) where (<+>) = (&&)
|
|
|
|
export
|
|
only : {n : Nat} -> Var n -> FreeVars n
|
|
only i = FV $ only' i where
|
|
only' : {n' : Nat} -> Var n' -> FreeVars' n'
|
|
only' VZ = replicate (pred n') False :< True
|
|
only' (VS i) = only' i :< False
|
|
|
|
export %inline
|
|
all : {n : Nat} -> FreeVars n
|
|
all = FV $ replicate n True
|
|
|
|
export %inline
|
|
none : {n : Nat} -> FreeVars n
|
|
none = FV $ replicate n False
|
|
|
|
|
|
export %inline
|
|
uncons : FreeVars (S n) -> (FreeVars n, Bool)
|
|
uncons (FV (xs :< x)) = (FV xs, x)
|
|
|
|
|
|
export %inline {n : Nat} -> Monoid (FreeVars n) where neutral = none
|
|
export %inline [AndM] {n : Nat} -> Monoid (FreeVars n) where neutral = all
|
|
|
|
|
|
private
|
|
self : {n : Nat} -> Context' (FreeVars n) n
|
|
self = tabulateVar n $ \i => FV $ tabulateVar n (== i)
|
|
|
|
export
|
|
shift : forall from, to. Shift from to -> FreeVars from -> FreeVars to
|
|
shift by (FV xs) = FV $ shift' by xs where
|
|
shift' : Shift from' to' -> FreeVars' from' -> FreeVars' to'
|
|
shift' SZ ctx = ctx
|
|
shift' (SS by) ctx = shift' by ctx :< False
|
|
|
|
|
|
export
|
|
fromSet : {n : Nat} -> SortedSet (Var n) -> FreeVars n
|
|
fromSet vs = FV $ tabulateVar n $ \i => contains i vs
|
|
|
|
export
|
|
toSet : {n : Nat} -> FreeVars n -> SortedSet (Var n)
|
|
toSet (FV vs) = SortedSet.fromList $ fold $
|
|
Context.zipWith (\i, b => i <$ guard b) (allVars n) vs
|
|
|
|
|
|
public export
|
|
interface HasFreeVars (0 tm : Nat -> Type) where
|
|
constructor HFV
|
|
fv : {n : Nat} -> tm n -> FreeVars n
|
|
|
|
public export
|
|
interface HasFreeDVars (0 tm : Nat -> Nat -> Type) where
|
|
constructor HFDV
|
|
fdv : {d, n : Nat} -> tm d n -> FreeVars d
|
|
|
|
public export %inline
|
|
fvWith : HasFreeVars tm => Singleton n -> tm n -> FreeVars n
|
|
fvWith (Val n) = fv
|
|
|
|
public export %inline
|
|
fdvWith : HasFreeDVars tm => Singleton d -> Singleton n -> tm d n -> FreeVars d
|
|
fdvWith (Val d) (Val n) = fdv
|
|
|
|
export
|
|
Fdv : (0 tm : _) -> {n : Nat} ->
|
|
HasFreeDVars tm => HasFreeVars (\d => tm d n)
|
|
Fdv tm @{HFDV fdv} = HFV fdv
|
|
|
|
|
|
export
|
|
fvEach : {n1, n2 : Nat} -> HasFreeVars env =>
|
|
Subst env n1 n2 -> Context' (Lazy (FreeVars n2)) n1
|
|
fvEach (Shift by) = map (delay . shift by) self
|
|
fvEach (t ::: th) = fvEach th :< fv t
|
|
|
|
export
|
|
fdvEach : {d, n1, n2 : Nat} -> HasFreeDVars env =>
|
|
Subst (env d) n1 n2 -> Context' (Lazy (FreeVars d)) n1
|
|
fdvEach (Shift by) = replicate n1 none
|
|
fdvEach (t ::: th) = fdvEach th :< fdv t
|
|
|
|
|
|
export
|
|
HasFreeVars Dim where
|
|
fv (K _ _) = none
|
|
fv (B i _) = only i
|
|
|
|
|
|
export
|
|
{s : Nat} -> HasFreeVars tm => HasFreeVars (Scoped s tm) where
|
|
fv (S _ (Y body)) = FV $ drop s (fv body).vars
|
|
fv (S _ (N body)) = fv body
|
|
|
|
export
|
|
implementation [DScope]
|
|
{s : Nat} -> HasFreeDVars tm =>
|
|
HasFreeDVars (\d, n => Scoped s (\d' => tm d' n) d)
|
|
where
|
|
fdv (S _ (Y body)) = FV $ drop s (fdv body).vars
|
|
fdv (S _ (N body)) = fdv body
|
|
|
|
export
|
|
fvD : {0 tm : _} -> {n : Nat} -> (forall d. HasFreeVars (tm d)) =>
|
|
Scoped s (\d => tm d n) d -> FreeVars n
|
|
fvD (S _ (Y body)) = fv body
|
|
fvD (S _ (N body)) = fv body
|
|
|
|
export
|
|
fdvT : HasFreeDVars tm => {s, d, n : Nat} -> Scoped s (tm d) n -> FreeVars d
|
|
fdvT (S _ (Y body)) = fdv body
|
|
fdvT (S _ (N body)) = fdv body
|
|
|
|
|
|
private
|
|
guardM : Monoid a => Bool -> Lazy a -> a
|
|
guardM b x = if b then x else neutral
|
|
|
|
export
|
|
implementation
|
|
(HasFreeVars tm, HasFreeVars env) =>
|
|
HasFreeVars (WithSubst tm env)
|
|
where
|
|
fv (Sub term subst) =
|
|
let Val from = getFrom subst in
|
|
foldMap (uncurry guardM) $ zipWith (,) (fv term).vars (fvEach subst)
|
|
|
|
export
|
|
implementation [WithSubst]
|
|
((forall d. HasFreeVars (tm d)), HasFreeDVars tm, HasFreeDVars env) =>
|
|
HasFreeDVars (\d => WithSubst (tm d) (env d))
|
|
where
|
|
fdv (Sub term subst) =
|
|
let Val from = getFrom subst in
|
|
fdv term <+>
|
|
foldMap (uncurry guardM) (zipWith (,) (fv term).vars (fdvEach subst))
|
|
|
|
|
|
export HasFreeVars (Term q d)
|
|
export HasFreeVars (Elim q d)
|
|
|
|
HasFreeVars (Term q d) where
|
|
fv (TYPE {}) = none
|
|
fv (IOState {}) = none
|
|
fv (Pi {arg, res, _}) = fv arg <+> fv res
|
|
fv (Lam {body, _}) = fv body
|
|
fv (Sig {fst, snd, _}) = fv fst <+> fv snd
|
|
fv (Pair {fst, snd, _}) = fv fst <+> fv snd
|
|
fv (Enum {}) = none
|
|
fv (Tag {}) = none
|
|
fv (Eq {ty, l, r, _}) = fvD ty <+> fv l <+> fv r
|
|
fv (DLam {body, _}) = fvD body
|
|
fv (NAT {}) = none
|
|
fv (Nat {}) = none
|
|
fv (Succ {p, _}) = fv p
|
|
fv (STRING {}) = none
|
|
fv (Str {}) = none
|
|
fv (BOX {ty, _}) = fv ty
|
|
fv (Box {val, _}) = fv val
|
|
fv (Let {rhs, body, _}) = fv rhs <+> fv body
|
|
fv (E e) = fv e
|
|
fv (CloT s) = fv s
|
|
fv (DCloT s) = fv s.term
|
|
fv (QCloT s) = fv s.term
|
|
|
|
HasFreeVars (Elim q d) where
|
|
fv (F {}) = none
|
|
fv (B i _) = only i
|
|
fv (App {fun, arg, _}) = fv fun <+> fv arg
|
|
fv (CasePair {pair, ret, body, _}) = fv pair <+> fv ret <+> fv body
|
|
fv (Fst pair _) = fv pair
|
|
fv (Snd pair _) = fv pair
|
|
fv (CaseEnum {tag, ret, arms, _}) =
|
|
fv tag <+> fv ret <+> foldMap fv (values arms)
|
|
fv (CaseNat {nat, ret, zero, succ, _}) =
|
|
fv nat <+> fv ret <+> fv zero <+> fv succ
|
|
fv (CaseBox {box, ret, body, _}) =
|
|
fv box <+> fv ret <+> fv body
|
|
fv (DApp {fun, _}) = fv fun
|
|
fv (Ann {tm, ty, _}) = fv tm <+> fv ty
|
|
fv (Coe {ty, val, _}) = fvD ty <+> fv val
|
|
fv (Comp {ty, val, zero, one, _}) =
|
|
fv ty <+> fv val <+> fvD zero <+> fvD one
|
|
fv (TypeCase {ty, ret, arms, def, _}) =
|
|
fv ty <+> fv ret <+> fv def <+> foldMap (\x => fv x.snd) (toList arms)
|
|
fv (CloE s) = fv s
|
|
fv (DCloE s) = fv s.term
|
|
fv (QCloE s) = fv s.term
|
|
|
|
|
|
|
|
private
|
|
expandDShift : {d1 : Nat} -> Shift d1 d2 -> Loc -> Context' (Dim d2) d1
|
|
expandDShift by loc = tabulateVar d1 (\i => B i loc // by)
|
|
|
|
private
|
|
expandDSubst : {d1 : Nat} -> DSubst d1 d2 -> Loc -> Context' (Dim d2) d1
|
|
expandDSubst (Shift by) loc = expandDShift by loc
|
|
expandDSubst (t ::: th) loc = expandDSubst th loc :< t
|
|
|
|
|
|
private
|
|
fdvSubst' : {d1, d2, n : Nat} -> (Located2 tm, HasFreeDVars tm) =>
|
|
tm d1 n -> DSubst d1 d2 -> FreeVars d2
|
|
fdvSubst' t th =
|
|
fold $ zipWith maybeOnly (fdv t).vars (expandDSubst th t.loc)
|
|
where
|
|
maybeOnly : {d : Nat} -> Bool -> Dim d -> FreeVars d
|
|
maybeOnly True (B i _) = only i
|
|
maybeOnly _ _ = none
|
|
|
|
private
|
|
fdvSubst : {d, n : Nat} -> (Located2 tm, HasFreeDVars tm) =>
|
|
WithSubst (\d => tm d n) Dim d -> FreeVars d
|
|
fdvSubst (Sub t th) = let Val from = getFrom th in fdvSubst' t th
|
|
|
|
|
|
export HasFreeDVars (Term q)
|
|
export HasFreeDVars (Elim q)
|
|
|
|
HasFreeDVars (Term q) where
|
|
fdv (TYPE {}) = none
|
|
fdv (IOState {}) = none
|
|
fdv (Pi {arg, res, _}) = fdv arg <+> fdvT res
|
|
fdv (Lam {body, _}) = fdvT body
|
|
fdv (Sig {fst, snd, _}) = fdv fst <+> fdvT snd
|
|
fdv (Pair {fst, snd, _}) = fdv fst <+> fdv snd
|
|
fdv (Enum {}) = none
|
|
fdv (Tag {}) = none
|
|
fdv (Eq {ty, l, r, _}) = fdv @{DScope} ty <+> fdv l <+> fdv r
|
|
fdv (DLam {body, _}) = fdv @{DScope} body
|
|
fdv (NAT {}) = none
|
|
fdv (Nat {}) = none
|
|
fdv (Succ {p, _}) = fdv p
|
|
fdv (STRING {}) = none
|
|
fdv (Str {}) = none
|
|
fdv (BOX {ty, _}) = fdv ty
|
|
fdv (Box {val, _}) = fdv val
|
|
fdv (Let {rhs, body, _}) = fdv rhs <+> fdvT body
|
|
fdv (E e) = fdv e
|
|
fdv (CloT s) = fdv s @{WithSubst}
|
|
fdv (DCloT s) = fdvSubst s
|
|
fdv (QCloT s) = fdv s.term
|
|
|
|
HasFreeDVars (Elim q) where
|
|
fdv (F {}) = none
|
|
fdv (B {}) = none
|
|
fdv (App {fun, arg, _}) = fdv fun <+> fdv arg
|
|
fdv (CasePair {pair, ret, body, _}) = fdv pair <+> fdvT ret <+> fdvT body
|
|
fdv (Fst pair _) = fdv pair
|
|
fdv (Snd pair _) = fdv pair
|
|
fdv (CaseEnum {tag, ret, arms, _}) =
|
|
fdv tag <+> fdvT ret <+> foldMap fdv (values arms)
|
|
fdv (CaseNat {nat, ret, zero, succ, _}) =
|
|
fdv nat <+> fdvT ret <+> fdv zero <+> fdvT succ
|
|
fdv (CaseBox {box, ret, body, _}) =
|
|
fdv box <+> fdvT ret <+> fdvT body
|
|
fdv (DApp {fun, arg, _}) =
|
|
fdv fun <+> fv arg
|
|
fdv (Ann {tm, ty, _}) =
|
|
fdv tm <+> fdv ty
|
|
fdv (Coe {ty, p, p', val, _}) =
|
|
fdv @{DScope} ty <+> fv p <+> fv p' <+> fdv val
|
|
fdv (Comp {ty, p, p', val, r, zero, one, _}) =
|
|
fdv ty <+> fv p <+> fv p' <+> fdv val <+>
|
|
fv r <+> fdv @{DScope} zero <+> fdv @{DScope} one
|
|
fdv (TypeCase {ty, ret, arms, def, _}) =
|
|
fdv ty <+> fdv ret <+> fdv def <+> foldMap (\x => fdvT x.snd) (toList arms)
|
|
fdv (CloE s) = fdv s @{WithSubst}
|
|
fdv (DCloE s) = fdvSubst s
|
|
fdv (QCloE s) = fdv s.term
|