quox/examples/list.quox

91 lines
2.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

load "nat.quox";
namespace vec {
def0 Vec : → ★ → ★ =
λ n A ⇒
caseω n return ★ of {
zero ⇒ {nil};
succ _, 0.Tail ⇒ A × Tail
};
def elim : 0.(A : ★) → 0.(P : (n : ) → Vec n A → ★) →
P 0 'nil →
ω.((x : A) → 0.(n : ) → 0.(xs : Vec n A) →
P n xs → P (succ n) (x, xs)) →
(n : ) → (xs : Vec n A) → P n xs =
λ A P pn pc n ⇒
case n return n' ⇒ (xs' : Vec n' A) → P n' xs' of {
zero ⇒ λ n ⇒
case n return n' ⇒ P 0 n' of { 'nil ⇒ pn };
succ n, ih ⇒ λ c ⇒
case c return c' ⇒ P (succ n) c' of {
(first, rest) ⇒ pc first n rest (ih rest)
}
};
#[compile-scheme "(lambda% (n xs) xs)"]
def up : 0.(A : ★) → (n : ) → Vec n A → Vec¹ n A =
λ A n ⇒
case n return n' ⇒ Vec n' A → Vec¹ n' A of {
zero ⇒ λ xs ⇒
case xs return Vec¹ 0 A of { 'nil ⇒ 'nil };
succ n', f' ⇒ λ xs ⇒
case xs return Vec¹ (succ n') A of {
(first, rest) ⇒ (first, f' rest)
}
}
}
def0 Vec = vec.Vec;
namespace list {
def0 List : ★ → ★ =
λ A ⇒ (len : ) × Vec len A;
def Nil : 0.(A : ★) → List A =
λ A ⇒ (0, 'nil);
def Cons : 0.(A : ★) → A → List A → List A =
λ A x xs ⇒ case xs return List A of { (len, elems) ⇒ (succ len, x, elems) };
def elim : 0.(A : ★) → 0.(P : List A → ★) →
P (Nil A) →
ω.((x : A) → 0.(xs : List A) → P xs → P (Cons A x xs)) →
(xs : List A) → P xs =
λ A P pn pc xs ⇒
case xs return xs' ⇒ P xs' of { (len, elems) ⇒
vec.elim A (λ n xs ⇒ P (n, xs))
pn (λ x n xs ih ⇒ pc x (n, xs) ih)
len elems
};
-- [fixme] List A <: List¹ A should be automatic, imo
#[compile-scheme "(lambda (xs) xs)"]
def up : 0.(A : ★) → List A → List¹ A =
λ A xs ⇒
case xs return List¹ A of { (len, elems) ⇒
case nat.dup! len return List¹ A of { [p] ⇒
caseω p return List¹ A of { (lenω, eq0) ⇒
case eq0 return List¹ A of { [eq] ⇒
(lenω, vec.up A lenω (coe (𝑖 ⇒ Vec (eq @𝑖) A) @1 @0 elems))
}
}
}
};
def foldr : 0.(A B : ★) → B → ω.(A → B → B) → List A → B =
λ A B z f xs ⇒ elim A (λ _ ⇒ B) z (λ x _ y ⇒ f x y) xs;
def map : 0.(A B : ★) → ω.(A → B) → List A → List B =
λ A B f ⇒ foldr A (List B) (Nil B) (λ x ys ⇒ Cons B (f x) ys);
def0 All : (A : ★) → (P : A → ★) → List A → ★ =
λ A P xs ⇒ foldr¹ A ★ True (λ x ps ⇒ P x × ps) (up A xs);
}
def0 List = list.List;