115 lines
3.4 KiB
Idris
115 lines
3.4 KiB
Idris
module Tests.Reduce
|
|
|
|
import Quox.Syntax as Lib
|
|
import Quox.Syntax.Qty.Three
|
|
import Quox.Equal
|
|
import TermImpls
|
|
import TypingImpls
|
|
import TAP
|
|
|
|
|
|
parameters {0 isRedex : RedexTest tm} {auto _ : Whnf tm isRedex err}
|
|
{auto _ : ToInfo err}
|
|
{auto _ : forall d, n. Eq (tm Three d n)}
|
|
{auto _ : forall d, n. Show (tm Three d n)}
|
|
{default empty defs : Definitions Three}
|
|
{default 0 d, n : Nat}
|
|
testWhnf : String -> tm Three d n -> tm Three d n -> Test
|
|
testWhnf label from to = test "\{label} (whnf)" $ do
|
|
result <- bimap toInfo fst $ whnf defs from
|
|
unless (result == to) $ Left [("exp", show to), ("got", show result)]
|
|
|
|
testNoStep : String -> tm Three d n -> Test
|
|
testNoStep label e = testWhnf label e e
|
|
|
|
|
|
tests = "whnf" :- [
|
|
"head constructors" :- [
|
|
testNoStep "★₀" $ TYPE 0,
|
|
testNoStep "[A] ⊸ [B]" $
|
|
Arr One (FT "A") (FT "B"),
|
|
testNoStep "(x: [A]) ⊸ [B [x]]" $
|
|
Pi One (FT "A") (S [< "x"] $ Y $ E $ F "B" :@ BVT 0),
|
|
testNoStep "λx. [x]" $
|
|
Lam $ S [< "x"] $ Y $ BVT 0,
|
|
testNoStep "[f [a]]" $
|
|
E $ F "f" :@ FT "a"
|
|
],
|
|
|
|
"neutrals" :- [
|
|
testNoStep "x" {n = 1} $ BV 0,
|
|
testNoStep "a" $ F "a",
|
|
testNoStep "f [a]" $ F "f" :@ FT "a",
|
|
testNoStep "★₀ ∷ ★₁" $ TYPE 0 :# TYPE 1
|
|
],
|
|
|
|
"redexes" :- [
|
|
testWhnf "[a] ∷ [A]"
|
|
(FT "a" :# FT "A")
|
|
(F "a"),
|
|
testWhnf "[★₁ ∷ ★₃]"
|
|
(E (TYPE 1 :# TYPE 3))
|
|
(TYPE 1),
|
|
testWhnf "(λx. [x] ∷ [A] ⊸ [A]) [a]"
|
|
((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
|
(F "a")
|
|
],
|
|
|
|
"definitions" :- [
|
|
testWhnf "a (transparent)"
|
|
{defs = fromList [("a", mkDef Zero (TYPE 1) (TYPE 0))]}
|
|
(F "a") (TYPE 0 :# TYPE 1)
|
|
],
|
|
|
|
"elim closure" :- [
|
|
testWhnf "x{}" {n = 1}
|
|
(CloE (BV 0) id)
|
|
(BV 0),
|
|
testWhnf "x{a/x}"
|
|
(CloE (BV 0) (F "a" ::: id))
|
|
(F "a"),
|
|
testWhnf "x{x/x,a/y}" {n = 1}
|
|
(CloE (BV 0) (BV 0 ::: F "a" ::: id))
|
|
(BV 0),
|
|
testWhnf "x{(y{a/y})/x}"
|
|
(CloE (BV 0) ((CloE (BV 0) (F "a" ::: id)) ::: id))
|
|
(F "a"),
|
|
testWhnf "(x y){f/x,a/y}"
|
|
(CloE (BV 0 :@ BVT 1) (F "f" ::: F "a" ::: id))
|
|
(F "f" :@ FT "a"),
|
|
testWhnf "([y] ∷ [x]){A/x}" {n = 1}
|
|
(CloE (BVT 1 :# BVT 0) (F "A" ::: id))
|
|
(BV 0),
|
|
testWhnf "([y] ∷ [x]){A/x,a/y}"
|
|
(CloE (BVT 1 :# BVT 0) (F "A" ::: F "a" ::: id))
|
|
(F "a")
|
|
],
|
|
|
|
"term closure" :- [
|
|
testWhnf "(λy. x){a/x}"
|
|
(CloT (Lam $ S [< "y"] $ N $ BVT 0) (F "a" ::: id))
|
|
(Lam $ S [< "y"] $ N $ FT "a"),
|
|
testWhnf "(λy. y){a/x}"
|
|
(CloT ([< "y"] :\\ BVT 0) (F "a" ::: id))
|
|
([< "y"] :\\ BVT 0)
|
|
],
|
|
|
|
"looking inside […]" :- [
|
|
testWhnf "[(λx. x ∷ A ⊸ A) [a]]"
|
|
(E $ (([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a")
|
|
(FT "a")
|
|
],
|
|
|
|
"nested redex" :- [
|
|
note "whnf only looks at top level redexes",
|
|
testNoStep "λy. [(λx. [x] ∷ [A] ⊸ [A]) [y]]" $
|
|
[< "y"] :\\ E ((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ BVT 0),
|
|
testNoStep "f [(λx. [x] ∷ [A] ⊸ [A]) [a]]" $
|
|
F "a" :@
|
|
E ((([< "x"] :\\ BVT 0) :# Arr One (FT "A") (FT "A")) :@ FT "a"),
|
|
testNoStep "λx. [y [x]]{x/x,a/y}" {n = 1} $
|
|
[< "x"] :\\ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id),
|
|
testNoStep "f ([y [x]]{x/x,a/y})" {n = 1} $
|
|
F "f" :@ CloT (E $ BV 1 :@ BVT 0) (BV 0 ::: F "a" ::: id)
|
|
]
|
|
]
|