37 lines
1.1 KiB
Idris
37 lines
1.1 KiB
Idris
module Quox.OPE.Split
|
|
|
|
import Quox.OPE.Basics
|
|
import Quox.OPE.Length
|
|
import Quox.OPE.Sub
|
|
|
|
%default total
|
|
|
|
|
|
public export
|
|
record Split {a : Type} (xs, ys, zs : Scope a) (p : xs `Sub` ys ++ zs) where
|
|
constructor MkSplit
|
|
{0 leftSub, rightSub : Scope a}
|
|
leftThin : leftSub `Sub` ys
|
|
rightThin : rightSub `Sub` zs
|
|
0 eqScope : xs = leftSub ++ rightSub
|
|
0 eqThin : p ~=~ leftThin ++ rightThin
|
|
|
|
export
|
|
split : Length ys =>
|
|
(zs : Scope a) -> (p : xs `Sub` ys ++ zs) -> Split xs ys zs p
|
|
split [<] p = MkSplit p zero Refl (endRight p)
|
|
split (zs :< z) p @{ys} with (p.view @{S (lengthApp ys %search)})
|
|
split (zs :< z) (SubM (S (2 * n)) (Keep p) v0) | (KEEP v Refl) =
|
|
case split zs (sub v) of
|
|
MkSplit l r Refl t =>
|
|
MkSplit l (keep r) Refl $
|
|
rewrite viewIrrel v0 (KEEP v Refl) in
|
|
trans (cong keep {a = sub v} t) $
|
|
sym $ keepAppRight l r
|
|
split (zs :< z) (SubM (2 * n) (Drop p) v0) | (DROP v Refl) =
|
|
case split zs (sub v) of
|
|
MkSplit l r Refl t =>
|
|
MkSplit l (drop r) Refl $
|
|
rewrite viewIrrel v0 (DROP v Refl) in
|
|
trans (cong drop {a = sub v} t) $
|
|
sym $ dropAppRight l r
|