module Quox.Var import public Quox.Loc import public Quox.Name import Quox.OPE import Data.Nat import Data.List import Data.Vect import public Quox.Decidable import Data.Bool.Decidable import Data.DPair %default total public export data Var : Nat -> Type where VZ : Var (S n) VS : Var n -> Var (S n) %name Var i, j %builtin Natural Var public export (.nat) : Var n -> Nat (VZ).nat = 0 (VS i).nat = S i.nat %transform "Var.(.nat)" Var.(.nat) i = believe_me i public export %inline Cast (Var n) Nat where cast = (.nat) public export %inline Cast (Var n) Integer where cast = cast . cast {to = Nat} export %inline Eq (Var n) where i == j = i.nat == j.nat export %inline Ord (Var n) where compare i j = compare i.nat j.nat export %inline Show (Var n) where showPrec d i = showCon d "V" $ showArg i.nat public export %inline Injective VS where injective Refl = Refl export Uninhabited (Var 0) where uninhabited _ impossible export Uninhabited (VZ = VS i) where uninhabited _ impossible export Uninhabited (VS i = VZ) where uninhabited _ impossible public export data Eqv : Var m -> Var n -> Type where EZ : VZ `Eqv` VZ ES : i `Eqv` j -> VS i `Eqv` VS j %name Var.Eqv e export decEqv : Dec2 Eqv decEqv VZ VZ = Yes EZ decEqv VZ (VS i) = No $ \case _ impossible decEqv (VS i) VZ = No $ \case _ impossible decEqv (VS i) (VS j) = case decEqv i j of Yes y => Yes $ ES y No n => No $ \(ES y) => n y private lookupS : Nat -> SnocList a -> Maybe a lookupS _ [<] = Nothing lookupS Z (sx :< x) = Just x lookupS (S i) (sx :< x) = lookupS i sx public export fromNatWith : (i : Nat) -> (0 p : i `LT` n) -> Var n fromNatWith Z (LTESucc _) = VZ fromNatWith (S i) (LTESucc p) = VS $ fromNatWith i p %transform "Var.fromNatWith" fromNatWith i p = believe_me i public export %inline V : (i : Nat) -> {auto 0 p : i `LT` n} -> Var n V i = fromNatWith i p export %inline tryFromNat : Alternative f => (n : Nat) -> Nat -> f (Var n) tryFromNat n i = case i `isLT` n of Yes p => pure $ fromNatWith i p No _ => empty export 0 toNatLT : (i : Var n) -> i.nat `LT` n toNatLT VZ = LTESucc LTEZero toNatLT (VS i) = LTESucc $ toNatLT i public export toNatInj : {i, j : Var n} -> i.nat = j.nat -> i = j toNatInj {i = VZ} {j = VZ} Refl = Refl toNatInj {i = VZ} {j = (VS i)} Refl impossible toNatInj {i = (VS i)} {j = VZ} Refl impossible toNatInj {i = (VS i)} {j = (VS j)} prf = cong VS $ toNatInj $ injective prf public export %inline Injective (.nat) where injective = toNatInj export 0 fromToNat : (i : Var n) -> (p : i.nat `LT` n) -> fromNatWith i.nat p = i fromToNat VZ (LTESucc p) = Refl fromToNat (VS i) (LTESucc p) = rewrite fromToNat i p in Refl export 0 toFromNat : (i : Nat) -> (p : i `LT` n) -> (fromNatWith i p).nat = i toFromNat 0 (LTESucc x) = Refl toFromNat (S k) (LTESucc x) = cong S $ toFromNat k x -- not using %transform like other things because weakSpec requires the proof -- to be relevant. but since only `LTESucc` is ever possible that seems -- to be an instance of ? export weak : (0 p : m `LTE` n) -> Var m -> Var n weak p i = fromNatWith i.nat $ transitive (toNatLT i) p public export 0 weakSpec : m `LTE` n -> Var m -> Var n weakSpec LTEZero _ impossible weakSpec (LTESucc p) VZ = VZ weakSpec (LTESucc p) (VS i) = VS $ weakSpec p i export 0 weakSpecCorrect : (p : m `LTE` n) -> (i : Var m) -> (weakSpec p i).nat = i.nat weakSpecCorrect LTEZero _ impossible weakSpecCorrect (LTESucc x) VZ = Refl weakSpecCorrect (LTESucc x) (VS i) = cong S $ weakSpecCorrect x i export 0 weakCorrect : (p : m `LTE` n) -> (i : Var m) -> (weak p i).nat = i.nat weakCorrect LTEZero _ impossible weakCorrect (LTESucc p) VZ = Refl weakCorrect (LTESucc p) (VS i) = cong S $ weakCorrect p i export 0 weakIsSpec : (p : m `LTE` n) -> (i : Var m) -> weak p i = weakSpec p i weakIsSpec p i = toNatInj $ trans (weakCorrect p i) (sym $ weakSpecCorrect p i) public export interface FromVar f where %inline fromVar : Var n -> Loc -> f n public export FromVar Var where fromVar x _ = x export tabulateV : {0 tm : Nat -> Type} -> (forall n. Var n -> tm n) -> (n : Nat) -> Vect n (tm n) tabulateV f 0 = [] tabulateV f (S n) = f VZ :: tabulateV (f . VS) n export allVars : (n : Nat) -> Vect n (Var n) allVars n = tabulateV id n public export data LT : Rel (Var n) where LTZ : VZ `LT` VS i LTS : i `LT` j -> VS i `LT` VS j %builtin Natural Var.LT %name Var.LT lt public export %inline GT : Rel (Var n) i `GT` j = j `LT` i export Transitive (Var n) LT where transitive LTZ (LTS _) = LTZ transitive (LTS p) (LTS q) = LTS $ transitive p q export Uninhabited (i `Var.LT` i) where uninhabited (LTS p) = uninhabited p export Uninhabited (VS i `LT` VZ) where uninhabited _ impossible export ltReflect : LT {n} `Reflects2` (<) ltReflect VZ VZ = RFalse absurd ltReflect VZ (VS j) = RTrue LTZ ltReflect (VS i) VZ = RFalse absurd ltReflect (VS i) (VS j) with (ltReflect i j) | (i < j) _ | RTrue yes | True = RTrue $ LTS yes _ | RFalse no | False = RFalse $ \case LTS p => no p export isLT : Dec2 Var.LT isLT i j = reflectToDec $ ltReflect i j public export data Compare : (i, j : Var n) -> Ordering -> Type where IsLT : (lt : i `LT` j) -> Compare i j LT IsEQ : Compare i i EQ IsGT : (gt : i `GT` j) -> Compare i j GT %name Compare cmp export compareS : Compare i j o -> Compare (VS i) (VS j) o compareS (IsLT lt) = IsLT (LTS lt) compareS IsEQ = IsEQ compareS (IsGT gt) = IsGT (LTS gt) export compareP : (i, j : Var n) -> Compare i j (compare i j) compareP VZ VZ = IsEQ compareP VZ (VS j) = IsLT LTZ compareP (VS i) VZ = IsGT LTZ compareP (VS i) (VS j) = compareS $ compareP i j export 0 compare2 : Compare {n} i j o -> o = compare i j compare2 (IsLT LTZ) = Refl compare2 (IsLT (LTS lt)) = compare2 (IsLT lt) compare2 IsEQ = sym $ compareNatDiag i.nat compare2 (IsGT LTZ) = Refl compare2 (IsGT (LTS gt)) = compare2 $ IsGT gt compare2 _ {n = 0} = absurd i export 0 compareSelf : Compare i i o -> o = EQ compareSelf p = rewrite compare2 p in compareNatDiag i.nat export 0 comparePSelf : (i : Var n) -> Compare i i EQ comparePSelf i = rewrite sym $ compareNatDiag i.nat in compareP i i public export data LTE : Rel (Var n) where LTEZ : VZ `LTE` j LTES : i `LTE` j -> VS i `LTE` VS j export Reflexive (Var n) LTE where reflexive {x = VZ} = LTEZ reflexive {x = VS i} = LTES reflexive export Transitive (Var n) LTE where transitive LTEZ q = LTEZ transitive (LTES p) (LTES q) = LTES $ transitive p q export Antisymmetric (Var n) LTE where antisymmetric LTEZ LTEZ = Refl antisymmetric (LTES p) (LTES q) = cong VS $ antisymmetric p q export splitLTE : {j : Var n} -> i `LTE` j -> Either (i = j) (i `LT` j) splitLTE {j = VZ} LTEZ = Left Refl splitLTE {j = VS _} LTEZ = Right LTZ splitLTE (LTES p) with (splitLTE p) _ | Left eq = Left $ cong VS eq _ | Right lt = Right $ LTS lt export Uninhabited (VS i `LTE` VZ) where uninhabited _ impossible export lteReflect : (i, j : Var n) -> (LTE i j) `Reflects` (i <= j) lteReflect VZ VZ = RTrue LTEZ lteReflect VZ (VS j) = RTrue LTEZ lteReflect (VS i) VZ = RFalse absurd lteReflect (VS i) (VS j) with (lteReflect i j) | (i <= j) _ | RTrue yes | True = RTrue (LTES yes) _ | RFalse no | False = RFalse $ \case LTES lte => no lte public export eqReflect : (i, j : Var n) -> (i = j) `Reflects` (i == j) eqReflect VZ VZ = RTrue Refl eqReflect VZ (VS i) = RFalse absurd eqReflect (VS i) VZ = RFalse absurd eqReflect (VS i) (VS j) with (eqReflect i j) | (i == j) _ | RTrue yes | True = RTrue $ cong VS yes _ | RFalse no | False = RFalse $ no . injective public export %inline varDecEq : (i, j : Var n) -> Dec (i = j) varDecEq i j = reflectToDec $ eqReflect i j -- justified by eqReflect [citation needed] private %inline decEqFromBool : (i, j : Var n) -> Dec (i = j) decEqFromBool i j = if i == j then Yes $ believe_me $ Refl {x = 0} else No $ id . believe_me %transform "Var.decEq" varDecEq = decEqFromBool public export %inline DecEq (Var n) where decEq = varDecEq export Tighten Var where tighten Id i = Just i tighten (Drop p) VZ = Nothing tighten (Drop p) (VS i) = tighten p i tighten (Keep p) VZ = Just VZ tighten (Keep p) (VS i) = VS <$> tighten p i