module Quox.Syntax.DimEq import public Quox.Syntax.Var import public Quox.Syntax.Dim import public Quox.Syntax.Subst import public Quox.Context import Quox.Pretty import Quox.Name import Data.Maybe import Data.Nat import Data.DPair import Data.Fun.Graph import Decidable.Decidable import Decidable.Equality import Derive.Prelude %language ElabReflection %default total public export DimEq' : Nat -> Type DimEq' = Context (Maybe . Dim) public export data DimEq : Nat -> Type where ZeroIsOne : DimEq d C : (eqs : DimEq' d) -> DimEq d %name DimEq eqs %runElab deriveIndexed "DimEq" [Eq, Ord, Show] public export consistent : DimEq d -> Bool consistent ZeroIsOne = False consistent (C eqs) = True public export data IfConsistent : DimEq d -> Type -> Type where Nothing : IfConsistent ZeroIsOne a Just : a -> IfConsistent (C eqs) a export Functor (IfConsistent eqs) where map f Nothing = Nothing map f (Just x) = Just (f x) export Foldable (IfConsistent eqs) where foldr f z Nothing = z foldr f z (Just x) = f x z export Traversable (IfConsistent eqs) where traverse f Nothing = pure Nothing traverse f (Just x) = Just <$> f x public export ifConsistent : Applicative f => (eqs : DimEq d) -> f a -> f (IfConsistent eqs a) ifConsistent ZeroIsOne act = pure Nothing ifConsistent (C _) act = Just <$> act public export toMaybe : IfConsistent eqs a -> Maybe a toMaybe Nothing = Nothing toMaybe (Just x) = Just x export fromGround' : BContext d -> Context' DimConst d -> DimEq' d fromGround' [<] [<] = [<] fromGround' (xs :< x) (ctx :< e) = fromGround' xs ctx :< Just (K e x.loc) export fromGround : BContext d -> Context' DimConst d -> DimEq d fromGround = C .: fromGround' public export %inline zeroEq : DimEq 0 zeroEq = C [<] public export %inline new' : {d : Nat} -> DimEq' d new' {d = 0} = [<] new' {d = S d} = new' :< Nothing public export %inline new : {d : Nat} -> DimEq d new = C new' public export %inline get' : DimEq' d -> Var d -> Maybe (Dim d) get' = getWith $ \p, by => map (// by) p public export %inline getVar : DimEq' d -> Var d -> Loc -> Dim d getVar eqs i loc = fromMaybe (B i loc) $ get' eqs i public export %inline getShift' : Shift len out -> DimEq' len -> Var len -> Maybe (Dim out) getShift' = getShiftWith $ \p, by => map (// by) p public export %inline get : DimEq' d -> Dim d -> Dim d get _ (K e loc) = K e loc get eqs (B i loc) = getVar eqs i loc public export %inline equal : DimEq d -> (p, q : Dim d) -> Bool equal ZeroIsOne p q = True equal (C eqs) p q = get eqs p == get eqs q infixl 7 : Maybe (Dim d) -> DimEq (S d) ZeroIsOne : Dim d -> Maybe (Dim d) -> Maybe (Dim d) ifVar i p = map $ \q => if q == B i noLoc then p else q -- (using decEq instead of (==) because of the proofs below) private %inline checkConst : (e, f : DimConst) -> (eqs : Lazy (DimEq' d)) -> DimEq d checkConst e f eqs = if isYes $ e `decEq` f then C eqs else ZeroIsOne export setConst : Var d -> DimConst -> Loc -> DimEq' d -> DimEq d setConst VZ e loc (eqs :< Nothing) = C $ eqs :< Just (K e loc) setConst VZ e _ (eqs :< Just (K f loc)) = checkConst e f $ eqs :< Just (K f loc) setConst VZ e loc (eqs :< Just (B i _)) = setConst i e loc eqs : (0 _ : i `LT` j) -> Loc -> DimEq' d -> DimEq d setVar' VZ (VS i) LTZ loc (eqs :< Nothing) = C eqs : i then B j jloc else B i loc) setVar' (VS i) (VS j) (LTS lt) loc (eqs :< p) = setVar' i j lt loc eqs : Loc -> Loc -> DimEq' d -> DimEq d setVar i j li lj eqs with (compareP i j) | (compare i.nat j.nat) setVar i j li lj eqs | IsLT lt | LT = setVar' i j lt lj eqs setVar i i li lj eqs | IsEQ | EQ = C eqs setVar i j li lj eqs | IsGT gt | GT = setVar' j i gt li eqs export %inline set : (p, q : Dim d) -> DimEq d -> DimEq d set _ _ ZeroIsOne = ZeroIsOne set (K e eloc) (K f floc) (C eqs) = checkConst e f eqs set (K e eloc) (B i iloc) (C eqs) = setConst i e eloc eqs set (B i iloc) (K e eloc) (C eqs) = setConst i e eloc eqs set (B i iloc) (B j jloc) (C eqs) = setVar i j iloc jloc eqs public export %inline Split : Nat -> Type Split d = (DimEq' d, DSubst (S d) d) export %inline split1 : DimConst -> Loc -> DimEq' (S d) -> Maybe (Split d) split1 e loc eqs = case setConst VZ e loc eqs of ZeroIsOne => Nothing C (eqs :< _) => Just (eqs, K e loc ::: id) export %inline split : Loc -> DimEq' (S d) -> List (Split d) split loc eqs = toList (split1 Zero loc eqs) <+> toList (split1 One loc eqs) export splits' : Loc -> DimEq' d -> List (DSubst d 0) splits' _ [<] = [id] splits' loc eqs@(_ :< _) = [th . ph | (eqs', th) <- split loc eqs, ph <- splits' loc eqs'] ||| the Loc is put into each of the DimConsts export %inline splits : Loc -> DimEq d -> List (DSubst d 0) splits _ ZeroIsOne = [] splits loc (C eqs) = splits' loc eqs private 0 newGetShift : (d : Nat) -> (i : Var d) -> (by : Shift d d') -> getShift' by (new' {d}) i = Nothing newGetShift (S d) VZ by = Refl newGetShift (S d) (VS i) by = newGetShift d i (ssDown by) export 0 newGet' : (d : Nat) -> (i : Var d) -> get' (new' {d}) i = Nothing newGet' d i = newGetShift d i SZ export 0 newGet : (d : Nat) -> (p : Dim d) -> get (new' {d}) p = p newGet d (K e _) = Refl newGet d (B i _) = rewrite newGet' d i in Refl export 0 setSelf : (p : Dim d) -> (eqs : DimEq d) -> set p p eqs = eqs setSelf p ZeroIsOne = Refl setSelf (K Zero _) (C eqs) = Refl setSelf (K One _) (C eqs) = Refl setSelf (B i _) (C eqs) with (compareP i i) | (compare i.nat i.nat) _ | IsLT lt | LT = absurd lt _ | IsEQ | EQ = Refl _ | IsGT gt | GT = absurd gt private prettyDVars : {opts : _} -> BContext d -> Eff Pretty (SnocList (Doc opts)) prettyDVars = traverse prettyDBind . toSnocList' private prettyCst : {opts : _} -> BContext d -> Dim d -> Dim d -> Eff Pretty (Doc opts) prettyCst dnames p q = hsep <$> sequence [prettyDim dnames p, cstD, prettyDim dnames q] private prettyCsts : {opts : _} -> BContext d -> DimEq' d -> Eff Pretty (SnocList (Doc opts)) prettyCsts [<] [<] = pure [<] prettyCsts dnames (eqs :< Nothing) = prettyCsts (tail dnames) eqs prettyCsts dnames (eqs :< Just q) = [|prettyCsts (tail dnames) eqs :< prettyCst dnames (BV 0 q.loc) (weakD 1 q)|] export prettyDimEq' : {opts : _} -> BContext d -> DimEq' d -> Eff Pretty (Doc opts) prettyDimEq' dnames eqs = do vars <- prettyDVars dnames eqs <- prettyCsts dnames eqs let prec = if length vars <= 1 && null eqs then Arg else Outer parensIfM prec $ fillSeparateTight !commaD $ toList vars ++ toList eqs export prettyDimEq : {opts : _} -> BContext d -> DimEq d -> Eff Pretty (Doc opts) prettyDimEq dnames ZeroIsOne = do vars <- prettyDVars dnames cst <- prettyCst [<] (K Zero noLoc) (K One noLoc) pure $ separateTight !commaD $ vars :< cst prettyDimEq dnames (C eqs) = prettyDimEq' dnames eqs public export wf' : DimEq' d -> Bool wf' [<] = True wf' (eqs :< Nothing) = wf' eqs wf' (eqs :< Just (K e _)) = wf' eqs wf' (eqs :< Just (B i _)) = isNothing (get' eqs i) && wf' eqs public export wf : DimEq d -> Bool wf ZeroIsOne = True wf (C eqs) = wf' eqs