module Tests.Typechecker import Quox.Syntax import Quox.Syntax.Qty.Three import Quox.Typechecker as Lib import public TypingImpls import TAP data Error' = TCError (Typing.Error Three) | WrongInfer (Term Three d n) (Term Three d n) | WrongQOut (QOutput Three n) (QOutput Three n) export ToInfo Error' where toInfo (TCError e) = toInfo e toInfo (WrongInfer good bad) = [("type", "WrongInfer"), ("wanted", prettyStr True good), ("got", prettyStr True bad)] toInfo (WrongQOut good bad) = [("type", "WrongQOut"), ("wanted", prettyStr True good), ("wanted", prettyStr True bad)] 0 M : Type -> Type M = ReaderT (Definitions Three) $ Either Error' inj : (forall m. CanTC Three m => m a) -> M a inj act = do env <- ask let res = runReaderT env act {m = Either (Typing.Error Three)} either (throwError . TCError) pure res reflTy : IsQty q => Term q d n reflTy = Pi zero (TYPE 0) $ S ["A"] $ Y $ Pi one (BVT 0) $ S ["x"] $ Y $ Eq0 (BVT 1) (BVT 0) (BVT 0) reflDef : IsQty q => Term q d n reflDef = ["A","x"] :\\ ["i"] :\\% BVT 0 defGlobals : Definitions Three defGlobals = fromList [("A", mkAbstract Zero $ TYPE 0), ("B", mkAbstract Zero $ TYPE 0), ("C", mkAbstract Zero $ TYPE 1), ("D", mkAbstract Zero $ TYPE 1), ("P", mkAbstract Zero $ Arr Any (FT "A") (TYPE 0)), ("a", mkAbstract Any $ FT "A"), ("a'", mkAbstract Any $ FT "A"), ("b", mkAbstract Any $ FT "B"), ("f", mkAbstract Any $ Arr One (FT "A") (FT "A")), ("g", mkAbstract Any $ Arr One (FT "A") (FT "B")), ("f2", mkAbstract Any $ Arr One (FT "A") $ Arr One (FT "A") (FT "A")), ("p", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0), ("q", mkAbstract Any $ Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0), ("refl", mkDef Any reflTy reflDef)] parameters (label : String) (act : Lazy (M ())) {default defGlobals globals : Definitions Three} testTC : Test testTC = test label $ runReaderT globals act testTCFail : Test testTCFail = testThrows label (const True) $ runReaderT globals act ctx : TContext Three 0 n -> TyContext Three 0 n ctx = MkTyContext new inferredTypeEq : TyContext Three d n -> (exp, got : Term Three d n) -> M () inferredTypeEq ctx exp got = catchError (inj $ equalType ctx exp got) (\_ : Error' => throwError $ WrongInfer exp got) qoutEq : (exp, got : QOutput Three n) -> M () qoutEq qout res = unless (qout == res) $ throwError $ WrongQOut qout res inferAs : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> Term Three d n -> M () inferAs ctx@(MkTyContext {dctx, _}) sg e ty = do case !(inj $ infer ctx sg e) of Just res => inferredTypeEq ctx ty res.type Nothing => pure () inferAsQ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> Term Three d n -> QOutput Three n -> M () inferAsQ ctx@(MkTyContext {dctx, _}) sg e ty qout = do case !(inj $ infer ctx sg e) of Just res => do inferredTypeEq ctx ty res.type qoutEq qout res.qout Nothing => pure () infer_ : TyContext Three d n -> (sg : SQty Three) -> Elim Three d n -> M () infer_ ctx sg e = ignore $ inj $ infer ctx sg e checkQ : TyContext Three d n -> SQty Three -> Term Three d n -> Term Three d n -> QOutput Three n -> M () checkQ ctx@(MkTyContext {dctx, _}) sg s ty qout = do case !(inj $ check ctx sg s ty) of Just res => qoutEq qout res Nothing => pure () check_ : TyContext Three d n -> SQty Three -> Term Three d n -> Term Three d n -> M () check_ ctx sg s ty = ignore $ inj $ check ctx sg s ty export tests : Test tests = "typechecker" :- [ "universes" :- [ testTC "0 · ★₀ ⇐ ★₁" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 1), testTC "0 · ★₀ ⇐ ★₂" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 2), testTC "0 · ★₀ ⇐ ★_" $ check_ (ctx [<]) szero (TYPE 0) (TYPE UAny), testTCFail "0 · ★₁ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 1) (TYPE 0), testTCFail "0 · ★₀ ⇍ ★₀" $ check_ (ctx [<]) szero (TYPE 0) (TYPE 0), testTCFail "0 · ★_ ⇍ ★_" $ check_ (ctx [<]) szero (TYPE UAny) (TYPE UAny), testTCFail "1 · ★₀ ⇍ ★₁" $ check_ (ctx [<]) sone (TYPE 0) (TYPE 1), testTC "0=1 ⊢ 0 · ★₁ ⇐ ★₀" $ check_ (MkTyContext (ZeroIsOne {d = 0}) [<]) szero (TYPE 1) (TYPE 0) ], "function types" :- [ note "A, B : ★₀; C, D : ★₁; P : A ⇾ ★₀", testTC "0 · A ⊸ B ⇐ ★₀" $ check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 0), note "subtyping", testTC "0 · A ⊸ B ⇐ ★₁" $ check_ (ctx [<]) szero (Arr One (FT "A") (FT "B")) (TYPE 1), testTC "0 · C ⊸ D ⇐ ★₁" $ check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 1), testTCFail "0 · C ⊸ D ⇍ ★₀" $ check_ (ctx [<]) szero (Arr One (FT "C") (FT "D")) (TYPE 0), testTC "0 · (1·x : A) → P x ⇐ ★₀" $ check_ (ctx [<]) szero (Pi One (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0) (TYPE 0), testTCFail "0 · A ⊸ P ⇍ ★₀" $ check_ (ctx [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0), testTC "0=1 ⊢ 0 · A ⊸ P ⇐ ★₀" $ check_ (MkTyContext (ZeroIsOne {d = 0}) [<]) szero (Arr One (FT "A") $ FT "P") (TYPE 0) ], "pair types" :- [ note #""A × B" for "(_ : A) × B""#, testTC "0 · A × A ⇐ ★₀" $ check_ (ctx [<]) szero (FT "A" `And` FT "A") (TYPE 0), testTCFail "1 · A × A ⇍ ★₀" $ check_ (ctx [<]) sone (FT "A" `And` FT "A") (TYPE 0) ], "free vars" :- [ note "A : ★₀", testTC "0 · A ⇒ ★₀" $ inferAs (ctx [<]) szero (F "A") (TYPE 0), testTC "0 · [A] ⇐ ★₀" $ check_ (ctx [<]) szero (FT "A") (TYPE 0), note "subtyping", testTC "0 · [A] ⇐ ★₁" $ check_ (ctx [<]) szero (FT "A") (TYPE 1), note "(fail) runtime-relevant type", testTCFail "1 · A ⇏ ★₀" $ infer_ (ctx [<]) sone (F "A"), note "refl : (0·A : ★₀) → (1·x : A) → (x ≡ x : A) ≔ (λ A x ⇒ λᴰ _ ⇒ x)", testTC "1 · refl ⇒ ⋯" $ inferAs (ctx [<]) sone (F "refl") reflTy, testTC "1 · [refl] ⇐ ⋯" $ check_ (ctx [<]) sone (FT "refl") reflTy ], "bound vars" :- [ testTC "x : A ⊢ 1 · x ⇒ A ⊳ 1·x" $ inferAsQ {n = 1} (ctx [< FT "A"]) sone (BV 0) (FT "A") [< one], testTC "x : A ⊢ 1 · [x] ⇐ A ⊳ 1·x" $ checkQ {n = 1} (ctx [< FT "A"]) sone (BVT 0) (FT "A") [< one], note "f2 : A ⊸ A ⊸ A", testTC "x : A ⊢ 1 · f2 [x] [x] ⇒ A ⊳ ω·x" $ inferAsQ {n = 1} (ctx [< FT "A"]) sone (F "f2" :@@ [BVT 0, BVT 0]) (FT "A") [< Any] ], "lambda" :- [ note "linear & unrestricted identity", testTC "1 · (λ x ⇒ x) ⇐ A ⊸ A" $ check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr One (FT "A") (FT "A")), testTC "1 · (λ x ⇒ x) ⇐ A → A" $ check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Any (FT "A") (FT "A")), note "(fail) zero binding used relevantly", testTCFail "1 · (λ x ⇒ x) ⇍ A ⇾ A" $ check_ (ctx [<]) sone (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")), note "(but ok in overall erased context)", testTC "0 · (λ x ⇒ x) ⇐ A ⇾ A" $ check_ (ctx [<]) szero (["x"] :\\ BVT 0) (Arr Zero (FT "A") (FT "A")), testTC "1 · (λ A x ⇒ refl A x) ⇐ ⋯ # (type of refl)" $ check_ (ctx [<]) sone (["A", "x"] :\\ E (F "refl" :@@ [BVT 1, BVT 0])) reflTy, testTC "1 · (λ A x ⇒ λᴰ i ⇒ x) ⇐ ⋯ # (def. and type of refl)" $ check_ (ctx [<]) sone reflDef reflTy ], "equalities" :- [ testTC "1 · (λᴰ i ⇒ a) ⇐ a ≡ a" $ check_ (ctx [<]) sone (DLam $ S ["i"] $ N $ FT "a") (Eq0 (FT "A") (FT "a") (FT "a")), testTC "0 · (λ p q ⇒ λᴰ i ⇒ p) ⇐ (ω·p q : a ≡ a') → p ≡ q" $ check_ (ctx [<]) szero (Lam $ S ["p"] $ Y $ Lam $ S ["q"] $ N $ DLam $ S ["i"] $ N $ BVT 0) (Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["p"] $ Y $ Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["q"] $ Y $ Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)), testTC "0 · (λ p q ⇒ λᴰ i ⇒ q) ⇐ (ω·p q : a ≡ a') → p ≡ q" $ check_ (ctx [<]) szero (Lam $ S ["p"] $ N $ Lam $ S ["q"] $ Y $ DLam $ S ["i"] $ N $ BVT 0) (Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["p"] $ Y $ Pi Any (Eq0 (FT "A") (FT "a") (FT "a")) $ S ["q"] $ Y $ Eq0 (Eq0 (FT "A") (FT "a") (FT "a")) (BVT 1) (BVT 0)) ], "misc" :- [ note "0·A : Type, 0·P : A → Type, ω·p : (1·x : A) → P x", note "⊢", note "1 · λ x y xy ⇒ λᴰ i ⇒ p (xy i)", note " ⇐ (0·x y : A) → (1·xy : x ≡ y) → Eq [i ⇒ P (xy i)] (p x) (p y)", testTC "cong" $ check_ (ctx [<]) sone (["x", "y", "xy"] :\\ ["i"] :\\% E (F "p" :@ E (BV 0 :% BV 0))) (Pi Zero (FT "A") $ S ["x"] $ Y $ Pi Zero (FT "A") $ S ["y"] $ Y $ Pi One (Eq0 (FT "A") (BVT 1) (BVT 0)) $ S ["xy"] $ Y $ Eq (S ["i"] $ Y $ E $ F "P" :@ E (BV 0 :% BV 0)) (E $ F "p" :@ BVT 2) (E $ F "p" :@ BVT 1)), note "0·A : Type, 0·P : ω·A → Type,", note "ω·p q : (1·x : A) → P x", note "⊢", note "1 · λ eq ⇒ λᴰ i ⇒ λ x ⇒ eq x i", note " ⇐ (1·eq : (1·x : A) → p x ≡ q x) → p ≡ q", testTC "funext" $ check_ (ctx [<]) sone (["eq"] :\\ ["i"] :\\% ["x"] :\\ E (BV 1 :@ BVT 0 :% BV 0)) (Pi One (Pi One (FT "A") $ S ["x"] $ Y $ Eq0 (E $ F "P" :@ BVT 0) (E $ F "p" :@ BVT 0) (E $ F "q" :@ BVT 0)) $ S ["eq"] $ Y $ Eq0 (Pi Any (FT "A") $ S ["x"] $ Y $ E $ F "P" :@ BVT 0) (FT "p") (FT "q")) ] ]